183 resultados para pH concentration
Resumo:
The aim of this study was to compare the concentration of mast cells (MCs) in the healing process of incisions. Thirty rats were submitted to six linear incisions each, performed in the dorsal skin by carbon dioxide (CO(2)) and diode lasers, electrocautery and conventional scalpel. The animals were euthanized at intervals of 0 h, 24 h, 48 h, 72 h, 7 days and 14 days after the incisions had been made. Histological sections were obtained and stained with toluidine blue for identification of MCs, which were manually counted by conventional microscopy in 20 microscopic fields in the border of the incision, near the granulation tissue, or in the area of new collagen formation, depending on intervals. The concentration of MCs was significantly higher in the wounds made by scalpel than in those made by other techniques at 48 h and 72 h. After 72 h the number of MCs was also significantly higher after electrocautery than after incisions made by 4 W CO(2) laser. On days 7 and 14, there was no significant difference in the MC count among the different types of incisions. In summary, the MC concentration varied after different surgical incisions at early phases of wound healing. At the end of the healing process, however, there were similar MC concentrations around the incisions, suggesting that, in standard incisions in the surgical techniques studied, the wound healing process ultimately occurred in a similar pattern.
Resumo:
This study aims to investigate whether infrared diode low-level laser therapy (LLLT) increased salivary flow rate and altered pH value, protein concentration, and peroxidase and amylase activities in saliva of rats. Wistar rats were used and divided into three groups. Experimental groups (A and 13) had their parotid, submandibular and sublingual glands submitted to diode laser, 808-nm wavelength, on two consecutive days. The dose results were 4 and 8 J/cm(2), respectively. A red guide light was used to visualize the irradiated area. Group C was irradiated only with red pilot beam and served as control. The saliva samples were collected after each irradiation step (first and second collection days) and 1 week after the first irradiation (seventh day). Statistical analysis was performed, and differences were observed according to different days of salivary collection. The results showed that salivary flow rate for groups A and B was higher on the seventh day if it is compared to data obtained for the first day (p<0.05). LLLT applications on salivary glands are a therapy procedure that requires further studies.
Resumo:
Objectives. To evaluate the effect of pH of storage medium on slow crack growth (SCG) parameters of dental porcelains. Methods. Two porcelains were selected: with (UD) and without (VM7) leucite particles, in order to assess if the microstructure would affect the response of the material to the pH variation. Disc specimens were produced following manufacturers` instructions. Specimens were stored in artificial saliva in pHs 3.5, 7.0 or 10.0 for 10 days and after that the fatigue parameters (n: SCG susceptibility coefficient and sigma(0): scaling parameter) were obtained by the dynamic fatigue test using the same pH of storage. Microstructural analysis of the materials was also performed. Results. For VM7, the values of n obtained in the different pHs were similar and varied from 29.9 to 31.2. The sigma(0) value obtained in pH 7.0 for VM7 was higher than that obtained in the other pHs, which were similar. For porcelain UD, n values obtained in pHs 7.0 and 10.0 were similar (40.8 and 39.6, respectively), and higher than that obtained in pH 3.5 (26.5). With respect to sigma(0), the value obtained for porcelain UD in pH 10.0 was lower than those obtained in pHs 3.5 and 7.0, which were similar. Significance. The effect of pH on the stress corrosion susceptibility (n) depended on the porcelain studied. While the n value of VM7 was not affected by the pH, UD presented lower n value in acid pH. For both porcelains, storage in acid or basic pH resulted in strength degradation. (C) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
The aims of endodontic treatment in cases of apical periodontitis are to reduce as much as possible the number of microorganisms inside the root canal system and to inactivate toxins produced by them. Most of the times, these objectives are not achieved solely by chemomechanical preparation, and intracanal dressing may be necessary. In these cases, calcium hydroxide is used as a root canal dressing due to its well-known and recognized antimicrobial activity. Chlorhexidine has a wide spectrum of antimicrobial activity and its association with calcium hydroxide has been recommended in an attempt to amplify antimicrobial effects of calcium hydroxide. It is also known that dentin exerts a buffering effect under wide pH variations, and may be responsible for decreasing the antimicrobial activity of drugs inside the root canal. The objectives of this study were to assess the pH of 2% chlorhexidine gel and calcium hydroxide alone or in combination, as well as the influence of dentin on the pH of these compounds. Dentin powder was obtained from bovine teeth and added as 1.8% to the volume of the medications. All substances were individually stored in plastic flasks, in triplicate. A pH meter was used at five different moments to assess pH in viscous medium: immediately after preparation and after 24 h, and 7, 14, and 21 days. Results were analyzed by paired Student`s t-test. Statistically significant differences were observed in the 2% chlorhexidine gel group alone or associated with calcium hydroxide and added of dentin powder (P < 0.05). Mean pH values indicated the influence of dentin powder because of a significant increase in pH. Calcium hydroxide with propylene glycol as the vehicle always showed high pH, demonstrating that this compound was not affected by the presence of dentin.
Resumo:
Background: Matrix metalloproteinase (MMP) inhibitors reduce dentine erosion. This in vitro study evaluated the effect of the supplementation of soft drinks with green tea extract, a natural inhibitor of MMPs, on their erosive potential against dentine. Methods: For each drink tested (Coca-Cola (TM), Kuat (TM) guarana, Sprite (TM) and light Coca-Cola (TM)), 40 dentine specimens were divided into two subgroups differing with respect to supplementation with green tea extract at 1.2% (OM24 (R), 100% Camellia sinensis leaf extract, containing 30 +/- 3% of catechin; Omnimedica, Switzerland) or not (control). Specimens were subjected to four pH cycles, alternating de-and remineralization in one day. For each cycle, samples were immersed in pure or supplemented drink (10 minutes, 30 mL per block) and in artificial saliva (60 minutes, 30 mL per block) at 37 degrees C, under agitation. Dentine alterations were determined by profilometry (mu m). Data were analysed by two-way ANOVA and Bonferroni`s test (p < 0.05). Results: A significant difference was observed among the drinks tested with Sprite (TM) leading to the highest surface loss and light Coca-Cola (TM) to the lowest. Supplementation with green tea extract reduced the surface loss by 15% to 40% but the difference was significant for Coca-Cola (TM) only. Conclusions: Supplementation of soft drinks with green tea extract might be a viable alternative to reduce their erosive potential against dentine.
Resumo:
Nails have been suggested as suitable biomarkers of exposure to F, with the advantage of being easily obtained. The effect of water F concentration, age, gender, nail growth rate and geographical area on the F concentration in the fingernail and toenail clippings were evaluated. Volunteers (n = 300) aged 3-7, 14-20, 30-40 and 50-60 years from five Brazilian communities (A-E) participated. Drinking water and nail samples were collected and F concentration was analyzed with the electrode. A reference mark was made on each nail and growth rates were calculated. Data were analyzed by ANOVA and linear regression (alpha = 0.05). Mean water F concentrations (8 SE, mg/l) were 0.09 +/- 0.01, 0.15 +/- 0.01, 0.66 +/- 0.01, 0.72 +/- 0.02, and 1.68 +/- 0.08 for A-E, respectively. Mean F concentrations (+/- SE, mg/kg) ranged between 1.38 +/- 0.14 (A, 50-60 years) and 10.20 +/- 2.35 (D, 50-60 years) for fingernails, and between 0.92 +/- 0.08 (A, 14-20 years) and 7.35 +/- 0.80 (E, 50-60 years) for toenails. Among the tested factors, geographical area and water F concentration exerted the most influence on finger- and toenail F concentrations. Subjects of older age groups (30-40 and 50-60 years) from D and E showed higher nail F concentrations than the others. Females presented higher nail F concentration than males. Water F concentration, age, gender and geographical area influenced the F concentration of finger- and toenails, and hence should be taken into account when using this biomarker of exposure to predict risk for dental fluorosis. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Introduction: An experimental mineral trioxide aggregate sealer (MTAS) has been developed for use as a root canal sealer. The aim of this study was to evaluate the setting time, pH, and calcium ion release of MTAS compared with white Portland cement (CPB-40; Votorantin Cimentos, Camargo Correa SA, Pedro Leopoldo, MG, Brazil), white MTA Angelus (MTA; Angelus, Londrina, PR, Brazil), and AH Plus (Dentsply DeTrey, Konstanz, Germany). Methods: For the evaluation of setting time, each material was analyzed using Gilmore-type needles. Polyethylene tubes with the materials were immersed in distilled water for the measurement of pH (digital pH meter) and calcium release (atomic absorption spectrophotometry). The evaluations were performed at 3, 6, 12, 24, and 48 hours and 7, 14, and 28 days. Data were analyzed by analysis of variance and the Tukey test at 5% significance level. Results: MTAS showed higher calcium release at all experimental periods, a greater increase in pH up to 48 hours and the longest setting time. Conclusions: MTAS presented favorable properties for its indication as a root canal sealer. (J Endod 2011;37:844-846)
Resumo:
This in vitro study evaluated the effect of a prolonged erosive pH cycling on the superficial microhardness change (SMHC) and the erosive wear of different restorative materials. Eighty enamel specimens with prepared cavities of 1.5 x 1.5 mm were randomly divided into eight groups according to the restorative materials used for the fillings (RMGI - resin-modified glass-ionomer, CGI - conventional glass-ionomer, CR- composite resin, A - amalgam) and immersion media used (ERO - erosive medium or SAL - artificial saliva). During 35 days, half of the specimens were immersed in a cola drink (ERO), for 5 min, three times a day, and they remained in SAL between the erosive cycles. The other half of the specimens was immersed in SAL only, for the entire experimental period (control). Data were tested for significant differences by anova and Tukey`s tests (P < 0.05). Scanning electron microscopy images were made to illustrate the enamel erosive wear and restorative materials alterations. The mean SMHC (%) and mean erosive wear (mu m) of the materials were: RMGI-ERO (30/0.5); CGI-ERO (37/0.5); CR-ERO (-0.3/0.3); A-ERO (-4/0.3); RMGI-SAL (4/0.4); CGI-SAL (-6/0.4); CR-SAL (-3/0.2) and A-SAL (2/0.4). Scanning electron microscopy images showed pronounced enamel erosive wear on groups submitted to erosive pH cycling when compared with groups maintained in saliva. In conclusion, the prolonged pH cycling promoted significantly higher alterations (SMHC and erosive wear) on the glass-ionomer cements than the CR and amalgam.
Resumo:
This in vitro study evaluated the effect of erosive pH cycling on the percentage of surface micro-hardness change (%SMHC) and wear of different restorative materials and bovine enamel restored with these materials. Eighty enamel specimens were randomly divided into eight groups according to the restorative materials and immersion media used: GI/GV-resin-modifled glass-ionomer, GII/GVI-conventional glass-ionomer, GIII/GVII-resin composite and GIV/GVIII-amalgam. Over a period of seven days, groups GI to GIV were immersed in a cola drink (ERO) for 5 minutes, 3x/day and kept in artificial saliva between erosive cycles. Groups GV to GVIII were immersed in artificial saliva (SAL) throughout the entire experimental period (control). Data were tested for significant differences using ANOVA and Tukey`s tests (p < 0.05). For %SMHC, considering the restorative materials, no significant differences were detected among the materials and immersion media. Mean wear was higher for the resin modified glass ionomer cement when compared to conventional cement, but those materials did not significantly differ from the others. For enamel analyses, erosive pH cycling promoted higher wear and %SMHC compared to saliva. There were no significant differences in wear and %SMHC of enamel around the different restorative materials, regardless of the distance from the restorative material (50, 150 or 300 mu m). In conclusion, there were only subtle differences among the materials, and these differences were not able to protect the surrounding enamel from erosion.
Resumo:
This in situ/ex vivo study assessed the effect of different concentrations of fluoride in dentifrices on dentin subjected to erosion or to erosion plus abrasion. Ten volunteers took part in this crossover and double-blind study performed in 3 phases (7 days). They wore acrylic palatal appliances containing 4 bovine dentin blocks divided in two rows: erosion and erosion plus abrasion. The blocks were subjected to erosion by immersion ex vivo in a cola drink (60 s, pH 2.6) 4 times daily. During this step, the volunteers brushed their teeth with one of three dentifrices D (5,000 ppm F, NaF, silica); C (1,100 ppm F, NaF, silica) and placebo (22 ppm F, silica). Then, the respective dentifrice slurry (1: 3) was dripped on dentin surfaces. While no further treatment was performed in one row, the other row was brushed using an electric toothbrush for 30 s ex vivo. The appliances were replaced in the mouth and the volunteers rinsed with water. Dentin loss was determined by profilometry and analyzed by 2-way ANOVA/Bonferroni test (alpha = 0.05). Dentin loss after erosive-abrasive wear was significantly greater than after erosion alone. Wear was significantly higher for the placebo than for the D and C dentifrices, which were not significantly different from each other. It can be concluded that the presence of fluoride concentrations around 1,100 ppm in dentifrices is important to reduce dentin wear by erosion and erosion + abrasion, but the protective effect does not increase with fluoride concentration. Copyright (C) 2008 S. Karger AG, Basel.
Resumo:
Introduction: To evaluate calcium ion release and pH of Sealer 26 (S26) (Dentsply, Rio de Janeiro, RJ, Brazil), white mineral trioxide aggregate (MTA), Endo CPM Sealer (CPM1) (EGEO SRL Bajo licencia MTM Argentina SA, Buenos Aires, Argentina), Endo CPM Sealer in a thicker consistency (CPM 2), and zinc oxide and eugenol cement (ZOE). Methods: Material samples (n = 10) were placed in polyethylene tubes and immersed in 10 mL of distilled water. After 3, 6,12,24, and 48 hours and 7,14, and 28 days, the water pH was determined with a pH meter, and calcium release was assessed by atomic absorption spectrophotometry. An empty tube was used as the control group. Results: The control group presented a pH value of 6.9 at all studied periods and did not show the presence of calcium ion. S26 presented greater hydroxyl ion release up to 12 hours (p < 0.05). From 24 hours until 28 days, S26, MTA, CPM1, and CPM2 had similar results. in ail periods, ZOE presented the lowest hydroxyl ion release. CPM1, followed by CPM2, released the most calcium ions until 24 hours (p < 0.05). Between 48 hours and 7 days, CPM1 and CPM2 had the highest release. A greater calcium ion release was observed for CPM2, followed by CPM1 at 14 days and for S26, CPM1, and CPM2 at 28 days. ZOE released the least calcium ions in all periods. Conclusion: Sealer 26, MTA, and Endo CPM sealer at normal or thicker consistency release hydroxyl and calcium ions. Endo CPM sealer may be an alternative as root-end filling material. (J Endod 2009;35:1418-1421)
Resumo:
Objective. The purpose of this study was to evaluate the pH and calcium ion release of 6 materials used for root-end filling and perforation repair. Study design. Gray ProRoot MTA, gray MTA-Angelus, white MTA-Angelus, and CPM were compared to 2 experimental ones: MTA-exp, also based in Portland cement with a modified mixing liquid, and MBPc, an epoxy-resin based cement containing calcium hydroxide. After 3, 24, 72, and 168 hours the water in which each sample had been immersed was tested to determine the ph and calcium ion release. Results. All the analyzed materials showed alkaline pH and capacity to release calcium ions; however, a tendency of reduction of these characteristics was noted for all the analyzed materials, except for the MBPc, which showed a slight increase of pH among the 3 initial periods. Conclusion. The results suggest that all materials investigated presented alkaline pH and ability of release of calcium ions. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108: 135-139)
Resumo:
This study evaluated the influence of addition of 10% calcium chloride (CaCl(2)) on the setting time, solubility, disintegration, and pH of white MTA (WMTA) and white Portland cement (WPC). A test of the setting time was performed following the #57 ADA specifications and a test of the final setting time according to the ASTM. For the solubility tests disintegration and pH, Teflon rings were filled with the cements and weighed after setting. After 24 h in a desiccator, they were once again weighed. Thereafter, they were immersed in MiliQ water for 24 and 72 h and 7, 14, and 28 days, with maintenance in the desiccator and weighing between periods. The pH of water in which the rings were immersed was measured immediately after contact with them and in the other periods. The addition of CaCl(2) provided a significant reduction (50%) in the initial setting time of cements. The final setting time of WMTA was reduced in 35.5% and the final setting time of WPC in 68.5%. The WMTA with CaCl(2) absorbed water and gained weight with time, except for in the 24-h period. The addition of CaCl(2) to the WPC reduced its solubility. The addition of CaCl(2) increased the pH of WMTA in the immediate period and at 24 and 72 h and for WPC in the immediate period and at 24 h. The addition of CaCl(2) to WMTA and WPC reduced the setting times and solubility of both and increased the pH of cements in the initial periods. (J Endod 2009;35:550-554)
Resumo:
Objective: To evaluate whether the type of cola drink (regular or diet) could influence the wear of enamel subjected to erosion followed by brushing abrasion, Method and !Materials: Ten volunteers wore intraoral devices that each had eight bovine enamel blocks divided into four groups; ER, erosion with regular cola; EAR, erosion with regular cola plus abrasion; EL, erosion with light cola; and EAL, erosion with light cola plus abrasion, Each day for 1 week, half of each device was immersed in regular cola for 5 minutes, Then, two blocks were brushed using a fluoridated toothpaste and electric toothbrush for 30 seconds four times daily, Immediately after, the other half of the device was subjected to the same procedure using a light cola, The pH, calcium, phosphorus, and fluoride concentrations of the colas were analyzed using standard procedures, Enamel alterations were measured by profilometry. Data were tested using two-way ANOVA and Bonferroni test (P < .05), Results: Regarding chemical characteristics, light cola presented pH 3.0, 13.7 mg Ca/L, 15.5 mg P/L, and 0.31 mg F/L, while regular cola had pH 2.6, 32.1 mg Ca/L, 1:8.1 mg P/L, and 0.26 mg F/L, The light cola promoted less enamel loss (EL, 0.36 pm; EAL, 0.39 pm) than its regular counterpart (ER, 0.72 pm; EAR, 0.95 pm) for both conditions, There was not a significant difference (P > .05) between erosion and erosion plus abrasion for light cola, However, for regular cola, erosion plus abrasion resulted in higher enamel loss than erosion alone,.nclusion: The data suggest that light cola promoted less enamel wear even when erosion was followed by brushing abrasion, (Quintessence Int 2011;42:xxx-xx)()
Resumo:
Objectives. To better comprehend the role of CHX in the preservation of resin-dentin bonds, this study investigated the substantivity of CHX to human dentin. Material and methods. Dentin disks (n = 45) were obtained from the mid-coronal portion of human third molars. One-third of dentin disks were kept mineralized (MD), while the other two-thirds had one of the surfaces partially demineralized with 37% phosphoric acid for 15 s (PDD) or they were totally demineralized with 10% phosphoric acid (TDD). Disks of hydroxyapatite (HA) were also prepared. Specimens were treated with: (1) 10 mu L of distilled water (controls), (2) 10 mu L of 0.2% chlorhexidine diacetate (0.2% CHX) or (3) 10 mu L of 2% chlorhexidine diacetate (2% CHX). Then, they were incubated in 1 mL of PBS (pH 7.4, 37 degrees C). Substantivity was evaluated as a function of the CHX-applied dose after: 0.5 h, 1 h, 3 h, 6 h, 24 h, 168 h (1 week), 672 h (4 weeks) and 1344 h (8 weeks) of incubation. CHX concentration in eluates was spectrophotometrically analyzed at 260 nm. Results. Significant amounts of CHX remained retained in dentin substrates (MD, PPD or TDD), independent on the CHX-applied dose or time of incubation (p < 0.05). High amounts of retained CHX onto HA were observed only for specimens treated with the highest concentration of CHX (2%) (p < 0.05). Conclusion. The outstanding substantivity of CHX to dentin and its reported effect on the inhibition of dentinal proteases may explain why CHX can prolong the durability of resin-dentin bonds. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.