172 resultados para Synaptonemal complex failure
Resumo:
Objective: To investigate the presence and distribution of substance P (SP) and neurokinin I receptor (NK-IR) in oral squamous cell carcinoma (OSCC) and their relationship with proliferation. Patients and Methods: Ninety OSCCs from 73 patients were immunohistochemically analyzed using monoclonal antibodies against SP, NK-IR and Ki-67 in a case and control study. Results: Seventy-one percent (n=49) of cases expressed SP on tumour cell membrane, 81.3% (n=69) in cytoplasm, 39.4% (n=28) in nucleus, 81.6% (n=71) in infiltrating lymphocytes, and 58.1% (n=43) in peritumoural or intratumoural blood vessels; 14% (n=12) of cases expressed NK-1R on tumour cell membrane, 50% (n=43) in cytoplasm, 48.3% (n=42) in infiltrating lymphocytes and 22.5% (n=18) in tumour blood vessels. All cases expressed Ki-67, which was expressed in >25% of tumour cells in 79.8% of cases (n=63). Direct significant associations were observed in SP expression between different tissue levels (p<0.01), between SP and NK-IR tumour cell membrane expression (p<0.01), and between joint,SP and NK-IR expression in tumour cell cytoplasm and a higher expression of Ki-67 (p<0.05). Conclusion: The ubiquitous presence of SP strongly suggests a role for SP/NK-1R complex in tumour development and progression and possibly for NK-IR antagonists, such as L-773060, in the management of patients with oral cancer.
Resumo:
Purpose: Chipping within veneering porcelain has resulted in high clinical failure rates for implant-supported zirconia (yttria-tetragonal zirconia polycrystals [Y-TZP]) bridges. This study evaluated the reliability and failure modes of mouth-motion step-stress fatigued implant-supported Y-TZP versus palladium-silver alloy (PdAg) three-unit bridges. Materials and Methods: Implant-abutment replicas were embedded in polymethylmethacrylate resin. Y-TZP and PdAg frameworks, of similar design (n = 21 each), were fabricated, veneered, cemented (n = 3 each), and Hertzian contact-tested to obtain ultimate failure load. In each framework group, 18 specimens were distributed across three step-stress profiles and mouth-motion cyclically loaded according to the profile on the lingual slope of the buccal cusp of the pontic. Results: PdAg failures included competing flexural cracking at abutment and/or connector area and chipping, whereas Y-TZP presented predominantly cohesive failure within veneering porcelain. Including all failure modes, the reliability (two-sided at 90% confidence intervals) for a ""mission"" of 50,000 and 100,000 cycles at 300 N load was determined (Alta Pro, Reliasoft, Tucson, AZ, USA). No difference in reliability was observed between groups for a mission of 50,000. Reliability remained unchanged for a mission of 100,000 for PdAg, but significantly decreased for Y-TZP. Conclusions: Higher reliability was found for PdAg for a mission of 100,000 cycles at 300 N. Failure modes differed between materials.
Resumo:
Objectives: To evaluate the effect of framework design on the fatigue life and failure modes of metal ceramic (MC, Ni-Cr alloy core, VMK 95 porcelain veneer), glass-infiltrated alumina (ICA, In-Ceram Alumina/VM7), and veneered yttria-stabilized tetragonal zirconia polycrystals (Y-TZP, IPSe.max ZirCAD/IPS e.max,) crowns. Methods: Sixty composite resin tooth replicas of a prepared maxillary first molar were produced to receive crowns systems of a standard (MCs, ICAs, and Y-TZPs, n = 10 each) or a modified framework design (MCm, ICAm, and Y-TZPm, n = 10 each). Fatigue loading was delivered with a spherical steel indenter (3.18 mm radius) on the center of the occlusal surface using r-ratio fatigue (30-300 N) until completion of 10(6) cycles or failure. Fatigue was interrupted every 125,000 cycles for damage evaluation. Weibull distribution fits and contour plots were used for examining differences between groups. Failure mode was evaluated by light polarized and SEM microscopy. Results: Weibull analysis showed the highest fatigue life for MC crowns regardless of framework design. No significant difference (confidence bound overlaps) was observed between ICA and Y-TZP with or without framework design modification. Y-TZPm crowns presented fatigue life in the range of MC crowns. No porcelain veneer fracture was observed in the MC groups, whereas ICAs presented bulk fracture and ICAm failed mainly through the veneer. Y-TZP crowns failed through chipping within the veneer, without core fractures. Conclusions: Framework design modification did not improve the fatigue life of the crown systems investigated. Y-TZPm crowns showed comparable fatigue life to MC groups. Failure mode varied according to crown system. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Objectives To compare the reliability of the disto-facial (DF) and mesio-lingual (ML) cusps of an anatomically correct zirconia (Y-TZP) crown system The research hypotheses tested were (1) fatigue reliability and failure mode are similar for the ML and DF cusps, (2) failure mode of one cusp does not affect the failure of the other Methods The average dimensions of a mandibular first molar crown were imported into CAD software, a tooth preparation was modelled by 1 5 mm marginal high reduction of proximal walls and occlusal surface by 2 0 mm The CAD-based tooth preparation was milled and used as a die to fabricate crowns (n = 14) with porcelain veneer on a 0 5 mm Y-TZP core. Crowns were cemented on composite reproductions of the tooth preparation The crowns were step-stress mouth motion fatigued with sliding (0 7 mm) a tungsten-carbide indenter of 6 25 mm diameter down on the inclines of either the DF or ML cusps Use level probability Weibull curve with use stress of 200 N and the reliability for completion of a mission of 50,000 cycles at 200 N load were calculated Results Reliability for a 200 N at 50,000 cycles mission was not different between tested cusps SEM imaging showed large cohesive failures within the veneer for the ML and smaller for the DF Fractures originated from the contact area regardless of the cusp loaded Conclusion No significant difference on fatigue reliability was observed between the DF compared to the ML cusp Fracture of one cusp did not affect the other (c) 2010 Elsevier Ltd All rights reserved
Resumo:
Purpose: The aim of this research was to evaluate the fatigue behavior and reliability of monolithic computer-aided design/computer-assisted manufacture (CAD/CAM) lithium disilicate and hand-layer-veneered zirconia all-ceramic crowns. Materials and Methods: A CAD-based mandibular molar crown preparation, fabricated using rapid prototyping, served as the master die. Fully anatomically shaped monolithic lithium disilicate crowns (IPS e.max CAD, n = 19) and hand-layer-veneered zirconia-based crowns (IPS e.max ZirCAD/Ceram, n = 21) were designed and milled using a CAD/CAM system. Crowns were cemented on aged dentinlike composite dies with resin cement. Crowns were exposed to mouth-motion fatigue by sliding a WC-indenter (r = 3.18 mm) 0.7 mm lingually down the distobuccal cusp using three different step-stress profiles until failure occurred. Failure was designated as a large chip or fracture through the crown. If no failures occurred at high loads (> 900 N), the test method was changed to staircase r ratio fatigue. Stress level probability curves and reliability were calculated. Results: Hand-layer-veneered zirconia crowns revealed veneer chipping and had a reliability of < 0.01 (0.03 to 0.00, two-sided 90% confidence bounds) for a mission of 100,000 cycles and a 200-N load. None of the fully anatomically shaped CAD/CAM-fabricated monolithic lithium disilicate crowns failed during step-stress mouth-motion fatigue (180,000 cycles, 900 N). CAD/CAM lithium disilicate crowns also survived r ratio fatigue (1,000,000 cycles, 100 to 1,000 N). There appears to be a threshold for damage/bulk fracture for the lithium disilicate ceramic in the range of 1,100 to 1,200 N. Conclusion: Based on present fatigue findings, the application of CAD/CAM lithium disilicate ceramic in a monolithic/fully anatomical configuration resulted in fatigue-resistant crowns, whereas hand-layer-veneered zirconia crowns revealed a high susceptibility to mouth-motion cyclic loading with early veneer failures. Int J Prosthodont 2010; 23: 434-442.
Resumo:
This study evaluated the effect of core-design modification on the characteristic strength and failure modes of glass-infiltrated alumina (In-Ceram) (ICA) compared with porcelain fused to metal (PFM). Premolar crowns of a standard design (PFMs and ICAs) or with a modified framework design (PFMm and ICAm) were fabricated, cemented on dies, and loaded until failure. The crowns were loaded at 0.5 mm min(-1) using a 6.25 mm tungsten-carbide ball at the central fossa. Fracture load values were recorded and fracture analysis of representative samples were evaluated using scanning electron microscopy. Probability Weibull curves with two-sided 90% confidence limits were calculated for each group and a contour plot of the characteristic strength was obtained. Design modification showed an increase in the characteristic strength of the PFMm and ICAm groups, with PFM groups showing higher characteristic strength than ICA groups. The PFMm group showed the highest characteristic strength among all groups. Fracture modes of PFMs and of PFMm frequently reached the core interface at the lingual cusp, whereas ICA exhibited bulk fracture through the alumina core. Core-design modification significantly improved the characteristic strength for PFM and for ICA. The PFM groups demonstrated higher characteristic strength than both ICA groups combined.
Resumo:
Objective. The aim of this study was to identify the behavior of masticatory muscles after fractures of the zygomatico-orbital complex (ZOC) and subsequent surgical treatment, by using analyses of bite force, electromyography (EMG), and mandible mobility during a 6-month period after surgery. Study design. Five patients with fractured ZOCs treated surgically by using an intraoral approach and fixation exclusively in the region of the zygomaticomaxillary buttress were evaluated. The control group included 12 other patients. During postoperative follow-up, bite force, mandible mobility, and EMG analysis of the masticatory muscles were evaluated. Results. There was an increase in bite force with time, but a decline in EMG activity during the same period. In the mandible mobility analysis, only maximum mouth-opening values increased significantly after the surgical treatment. Conclusions. The masticatory musculature, according to bite force and EMG, returned to its normal condition by the second month after surgery, and maximum mouth opening was observed after the first month. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011;111:e1-e7)