216 resultados para Publishers and publishing
Resumo:
We have measured nucleotide variation in the CLOCK/CYCLE heterodimer inhibition domain (CCID) of the clock X-linked gene period in seven species belonging to the Drosophila buzzatii cluster, namely D. buzzatii, Drosophila koepferae, Drosophila antonietae, Drosophila serido, Drosophila gouveai, Drosophila seriema and Drosophila borborema. We detected that the purifying selection is the main force driving the sequence evolution in period, in agreement with the important role of CCID in clock machinery. Our survey revealed that period provides valuable phylogenetic information that allowed to resolve phylogenetic relationships among D. gouveai, D. borborema and D. seriema, which composed a polytomic clade in preliminary studies. The analysis of patterns of intraspecific variation revealed two different lineages of period in D. koepferae, probably reflecting introgressive hybridization from D. buzzatii, in concordance with previous molecular data.
Resumo:
Hexamerins and prophenoloxidases (PPOs) proteins are members of the arthropod-haemocyanin superfamily. In contrast to haemocyanin and PPO, hexamerins do not bind oxygen, but mainly play a role as storage proteins that supply amino acids for insect metamorphosis. We identified seven genes encoding hexamerins, three encoding PPOs, and one hexamerin pseudogene in the genome of the parasitoid wasp Nasonia vitripennis. A phylogenetic analysis of hexamerins and PPOs from this wasp and related proteins from other insect orders suggests an essentially order-specific radiation of hexamerins. Temporal and spatial transcriptional profiles of N. vitripennis hexamerins suggest that they have physiological functions other than metamorphosis, which are arguably coupled with its lifestyle.
Resumo:
Among marine invertebrates, the overall biomass invested in egg production varies widely within populations, which can result from the interaction of endogenous and exogenous factors. Species that have constant reproduction throughout the year can be good models to study the influence of environmental factors on reproductive processes. We conducted a seasonal comparison of egg production in the intertidal snapping shrimp Alpheus nuttingi, which shows a continuous reproductive pattern, to examine the hypothesis that differences in egg production are driven by environmental conditions and population features. This population showed an uncommon strategy, characterized by females that produce eggs of varying sizes within their clutches, with reduced egg volume when the number of eggs is higher (Spring-Summer). In these seasons, higher temperatures and greater food availability may allow the production of more eggs compared to the Autumn-Winter seasons. Compared to other alpheid shrimps, this population produces small eggs, but in larger numbers. Despite the higher fecundity, the reproductive output is relatively low, this production being supported by the large size of females from the southern Atlantic region. Our findings showed that the egg production of A. nuttingi was greatly influenced by environmental factors. Therefore, this shrimp, and probably other decapods that possess continuous reproduction, adopt different reproductive strategies during the year. (C) Koninklijke Brill NV, Leiden, 2010.
Resumo:
Aim The aim of this study was to assess the causal mechanisms underlying populational subdivision in Drosophila gouveai, a cactophilic species associated with xeric vegetation enclaves in eastern Brazil. A secondary aim was to investigate the genetic effects of Pleistocene climatic fluctuations on these environments. Location Dry vegetation enclaves within the limits of the Cerrado domain in eastern Brazil. Methods We determined the mitochondrial DNA haplotypes of 55 individuals (representing 12 populations) based on sequence data of a 483-bp fragment from the cytochrome c oxidase subunit II (COII) gene. Phylogenetic and coalescent analyses were used to test for the occurrence of demographic events and to infer the time of divergence amongst genetically independent groups. Results Our analyses revealed the existence of two divergent subclades (G1 and G2) plus an introgressed clade restricted to the southernmost range of D. gouveai. Subclades G1 and G2 displayed genetic footprints of range expansion and segregated geographical distributions in south-eastern and some central highland regions, east and west of the Parana River valley. Molecular dating indicated that the main demographic and diversification events occurred in the late to middle Pleistocene. Main conclusions The phylogeographical and genetic patterns observed for D. gouveai in this study are consistent with changes in the distribution of dry vegetation in eastern Brazil. All of the estimates obtained by molecular dating indicate that range expansion and isolation pre-dated the Last Glacial Maximum, occurring during the late to middle Pleistocene, and were probably triggered by climatic changes during the Pleistocene. The current patchy geographical distribution and population subdivision in D. gouveai is apparently closely linked to these past events.
Resumo:
In some insects, the finding of oviposition substrate triggers the uptake into oocytes of yolk proteins that are stored in the fat body during post-embryonic development. The main host of the bean weevil Zabrotes subfasciatus (Coleoptera; Chrysomelidae; Bruchinae; Amblycerini), in which larval resources are the sole source for future egg maturation, is Phaseolus vulgaris. Despite not feeding as adults, females of this species are able to lay eggs after encountering host seeds but it is not known how females react to changes in the availability of bean seeds. In the present study, the behaviour of Z. subfasciatus facing two very different environments for oviposition is investigated, as well as how this influences offspring fitness. The results obtained show that females of Z. subfasciatus react to variations in the availability of seeds belonging to the same host species by adjusting egg size and number. Females on low bean seed density lay larger and fewer eggs than those on high bean seed density, demonstrating a trade-off between these reproductive traits. Moreover, females can adjust egg size to changing levels of host availability during the first 4 days of their oviposition period. Although no difference in offspring weight is found, those from small eggs (low competition environment) result in larger adults. No response to selection on these traits after rearing beetles on the same host for 40 generations is observed. This unresponsiveness may indicate that beetle populations behave according to their reaction norm that already allows rapid adaptation to a varying amount of host-seed availability and better exploitation of the environments of this widespread stored-seed pest.
Resumo:
Cell damage and spatial localization deficits are often reported as long-term consequences of pilocarpine-induced status epilepticus. In this study, we investigated the neuroprotective effects of repeated drug administration after long-lasting status epilepticus. Groups of six to eight Wistar rats received microinjections of pilocarpine (2.4 mg/mu l, 1 mu l) in the right dorsal hippocampus to induce a status epilepticus, which was attenuated by thiopental injection (35 mg/kg, i.p.) 3 hrs after onset. Treatments consisted of i.p. administration of diazepam, ketamine, carbamazepine, or phenytoin at 4, 28, 52, and 76 hr after the onset of status epilepticus. Two days after the treatments, rats were tested in the Morris water maze and 1 week after the cognitive tests, their brains were submitted to histology to perform haematoxylin and eosin staining and glial fibrillary acidic protein (GFAP) immunofluorescence detection. Post-status epilepticus rats exhibited extensive gliosis and cell loss in the hippocampal CA1, CA3 (70% cell loss for both areas) and dentate gyrus (60%). Administration of all drugs reduced cell loss in the hippocampus, with best effects observed in brains slices of diazepam-treated animals, which showed less than 30% of loss in the three areas and decreased GFAP immunolabelling. Treatments improved spatial navigation during training trials and probe trial, with exception of ketamine. Interestingly, in the probe trial, only diazepam-treated animals showed preference for the goal quadrant. Our data point to significant neuroprotective effects of repeated administration of diazepam against status epilepticus-induced cell damage and cognitive disturbances.
Resumo:
The family Alpheidae, composed by shrimps of relatively small size, popularly known as snapping shrimps, is the one of the most diverse decapod groups. These shrimps are found worldwide and Occur in tropical and subtropical waters, from the intertidal zone to great depths. We investigated reproductive aspects of Alpheus armillatus, in order to gather information on egg production, aiming to enhance knowledge of its reproductive strategies in a population in an intertidal area of the South Atlantic. Ovigerous females were collected under rocks, in May and July 2006 (dry season) and in November 2006 and March 2007 (rainy season). Egg production and reproductive output were analyzed and compared seasonally and during the period of embryonic development. Females measured on average 11.28 mm CL with a mean of 763 eggs and 0.11 mm(3) egg volume. The egg volume of this population was smaller than previous estimates for other species of snapping shrimps, but the mean egg number was higher. The volume of eggs doubled during the incubation period, but despite this increase, no significant loss of eggs was observed. Alpheus armillatus invests oil average about 12% of body weight in reproduction. The proportional investment in egg production IS Significantly higher in the rainy season when compared with the dry season (17.9% vs 4.8%), correlated with higher temperatures and increased food availability at this time. Our results corroborated the hypothesis of a pattern of egg production influenced by environmental conditions and intraspecific variability among the family Alpheidae, as a function of the biogeographic region.
Resumo:
This work reports on the synthesis and characterization of a new complex of Eu(3+) with the 3-hydroxypicolinamide ligand (Hhpa). Here we present an approach for obtaining bis[2-carbamoyl(kappa O)pyridin-3-olato(kappa O`)] lanthanide complexes, which were characterized through elemental analysis, thermal analysis, infrared and photoluminescence spectroscopies (emission, excitation, luminescence lifetimes, quantum efficiencies, Judd-Ofelt parameters and quantum yields). Although hpa can act as a bidentate ligand in different conformations, the results attest for the occurrence of a unique coordination site of low symmetry for the Eu(3+) ions, in which two anionic hpa ligands coordinate the cations through an O/O chelating system. The phosphorescence of the synthesized gadolinium complex provides the energy of the triplet state, which is determined to be at 20,830 cm(-1) over the ground state. This makes the Hhpa ligand very adequate for sensitizing the Eu(3+) luminescence, which leads to a very efficient antenna effect and opens a wide range of applications for the complex in light emitting organic-inorganic devices.
Resumo:
A variety of nanostructures are being investigated as functional drug carriers for treatment of a wide range of diseases, most notably cardiovascular defects, autoimmune diseases, and cancer. The aim of this present contribution is to evaluate potentially applicable nanomaterials in the diagnosis and treatment of cancer due to their photophysical and photobiological properties and complexation behavior. The delivery systems consisted of chloro-aluminum phthalocyanine associated with beta-cyclodextrin and hydroxypropyl-beta-cyclodextrin. The preparation of the complex and its stoichiometry in an ethanol/buffer (3:1) solution were studied by spectroscopic techniques, which were defined as 1:2. The inclusion complex in the nanometer scale was observed on the basis of changes to the spectroscopic properties. The singlet oxygen production and complex photophysical parameters were determined by measuring luminescence at 1270 nm and by steady state and time resolved spectroscopic, respectively. The preparation of the complex was tested and analyzed with regard to cellular damage by visible light activation. The inclusion complex showed a higher singlet oxygen quantum yield compared with other systems and other photoactive dyes. There was also a reduction in the fluorescence quantum yield compared with the results obtained for zinc phthalocyanine in organic medium. The results reported clearly that the inclusion complex chloro-aluminum phthalocyanine/cyclodextrin showed some changes in its spectroscopy properties leading to better biodistribution and biocompatibility with a potential application in photodynamic therapy, especially in the case of neoplasy. Additionally, it also has non-oncological applications as a drug delivery system.
Resumo:
In this study a magnetic nanoemulsion (MNE) was developed from a mixture of two components, namely biodegradable surfactants and biocompatible citrate-coated cobalt ferrite-based magnetic fluid, for entrapment of Zn(II)-Phthalocyanine (ZnPc), the latter a classical photosensitizer (PS) species used in photodynamic therapy (PDT) procedures. The sample`s stability was evaluated as a function of time using photocorrelation spectroscopy (PCS) for determination of the average hydrodynamic diameter, diameter dispersion and zeta potential. The ZnPc-loaded magneto nanoemulstion (ZnPc/MNE) formulation was evaluated in vitro assays to access the phototoxicity and the effect of application of AC magnetic fields (magnetohyperthermia damage) after incubation with J774-A1 macrophages cells. Darkness toxicity, phototoxicity and AC magnetic field exposures revealed an enhancement response for combined photodynamic and magnetohyperthermia (MHT) processes, indicating the presence of the synergic effect.
Resumo:
Phosphoniobate glasses with composition (mol%) (100-x) NaPO(3)-xNb(2)O(5) ( x varying from 11 to 33) were prepared and characterized by means of thermal analysis, Fourier transform infrared spectroscopy, Raman scattering and (31)P nuclear magnetic resonance. The addition of Nb(2)O(5) to the polyphosphate base glass leads to depolymerization of the metaphosphate structure. Different colors were observed and assigned as indicating the presence of Nb(4+) ions, as confirmed by electron paramagnetic resonance measurements. The color was observed to depend on the glass composition and melting temperature as well. Er(3+) containing samples were also prepared. Strong emission in the 1550 nm region was observed. The Er(3+4)I(15/2) emission quantum efficiency was observed to be 90% and the quenching concentration was observed to be 1.1 mol%( 1.45 x 10(20) ions cm(-3)). Planar waveguides were prepared by Na(+)-K(+)-Ag(+) ion exchange with Er(3+) containing samples. Optical parameters of the waveguides were measured at 632.8, 543.5 and 1550 nm by the prism coupling technique as a function of the ion exchange time and Ag(+) concentration. The optimized planar waveguides show a diffusion depth of 5.9 mu m and one propagating mode at 1550 nm.
Resumo:
Nanostructured drug delivery systems (NDDS), such as liposomes, represent a growing area in biomedical research. These microheterogeneous media can be used in many biological systems to provide appropriate drug levels with a specific biodistribution. The photophysical properties of a silicon derivative of tribenzonaphthoporphyrazinato (Si-tri-PcNc) incorporated into liposome were studied by steady-state techniques, time-resolved fluorescence and laser flash photolysis. All the spectroscopy measurements performed allowed us to conclude that Si-tri-PcNc in liposome is a promising NDDS for PDT The in vitro experiments with liposomal NDDS showed that the system is not cytotoxic in darkness, but exhibits a substantial phototoxicity at 1 mu M of photosensitizer concentration and 10.0 J/cm(2) of light. These conditions are sufficient to kill about 80% of the cells.
Resumo:
Itraconazole (ITZ) is a drug used to treat various fungal infections and may cause side effects. The aim of this study was to develop and evaluate the in vitro activity of DMSA-PLGA nanoparticles loaded with ITZ against Paracoccidioides brasiliensis, as well as their cytotoxicity. Nanoparticles were prepared using the emulsification-evaporation technique and characterized by their encapsulation efficiency, morphology (TEM), size (Nanosight) and charge (zeta potential). Antifungal efficacy in P brasiliensis was determined by minimal inhibition concentration (MIC), and cytotoxicity using MU assay. ITZ was effectively incorporated in the PLGA-DMSA nanoparticles with a loading efficiency of 72.8 +/- 3.50%. The shape was round with a solid polymeric structure, and a size distribution of 174 +/- 86 nm (Average +/- SD). The particles were negatively charged. ITZ-NANO presented antifungal inhibition (MIC = 6.25 ug/mL) against P brasiliensis and showed lower in vitro cytotoxicity than free drug (ITZ).
Resumo:
Luminescent Eu(3+) and Er(3+) doped SnO(2) powders have been prepared by Sn(4+) hydrolysis followed by a controlled growth reaction using a particle`s surface modifier in order to avoid particles aggregation. The powders so obtained doped with up to 2 mol% rare earth ions are fully redispersable in water at pH > 8 and present the cassiterite structure. Particles size range from 3 to 10 nm as determined by Photon Correlation Spectroscopy. Rare earth ions were found to be essentially incorporated into the cassiterite structure, substituting for Sn(4+), for doping concentration smaller than 0.05 mol%. For higher concentration they are also located at the particles surface. The presence of Eu(3+) ions at the surface of the particles hinder their growth and has therefore allowed the preparation of new materials consisting of water redispersable powders coated with Eu(3+)-beta dike-tonate complexes. Enhanced UV excited photoluminescence was observed in water. SnO(2) single layers with thickness up to 200 nm and multilayer coatings were spin coated on borosilicate glass substrates from the colloidal suspensions. Waveguiding properties were evaluated by the prism coupling technique. For a 0.3 mu m planar waveguide single propagating mode was observed with attenuation coefficient of 3.5 dB/cm at 632.8 nm.
Resumo:
Porphyrins are currently used in photodynamic therapy as photosensitizers. In this paper we studied the interaction of two charged porphyrins, 5, 10, 15, 20-mesotetrakis(N-metyl-4-pyridyl) porphyrin, (TMPyP/chloride salt) cationic, and 5, 10, 15, 20-meso-tetrakis(sulfonatophenyl) porphyrin, (TPPS(4)/sodium salt) anionic, nanoassembled in phospholipid Langmuir monolayers and Langmuir-Blodgett films. Furthermore, we used chitosan to mediate the interaction between the porphyrins and the model membrane, aiming to understand the role of the polysaccharide in a molecular level. The effect of the interaction of the photosensitizers on the fluidity of the lipid monolayer was investigated by using dilatational surface elasticity. We also used photoluminescence (PL) spectroscopy to identify the porphyrins adsorbed in the phospholipid films. We observed an expansion of the monolayer promoted by the adsorption of the porphyrins into the lipid-air interface which was more pronounced in the case of TMPyP, as a consequence of a strong electrostatic interaction with the anionic monolayer. The chitosan promoted a higher adsorption of the porphyrins on the phospholipid monolayers and enabled the porphyrin to stay in its monomeric form (as confirmed by PL spectroscopy), thus demonstrating that chitosan can be pointed out as a potential photosensitizer delivery system in photodynamic therapy.