172 resultados para Organic Inorganic Hybrid Coatings


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The aim of this in vitro study was to evaluate the microtensile bond strength (mu TBS) and hybrid layer morphology of different adhesive systems, either followed by treatment with Nd:YAG laser irradiation or not. Previous studies have shown the effects of Nd:YAG laser irradiation on the dentin surface at restoration margins, but there are few reports about the significance of the irradiation on the hybrid layer. Materials and Methods: The flattened coronal and root dentin samples of 24 bovine teeth were randomly divided into 8 groups, according to the adhesive system used - Scotchbond Multi Purpose (SBMP) or Clearfil SE Bond (CSEB) - and were either irradiated with Nd:YAG or not, with different parameters: 0.8 W/10 Hz, 0.8 W/20 Hz, 1.2 W/10 Hz, 1.2 W/20 Hz. The left sides of specimens were the control groups, and right sides were irradiated. A composite crown was built over bonded surfaces and stored in water (24 h at 37 degrees C). Specimens were sectioned vertically into slabs that were subjected to mu TBS testing and observed by SEM. Results: Control groups (27.81 +/- 1.38) showed statistically higher values than lased groups (21.37 +/- 0.99), and CSEB control group values (31.26 +/- 15.71) were statistically higher than those of SBMP (24.3 +/- 10.66). There were no significant differences between CSEB (20.34 +/- 10.01) and SBMP (22.43 +/- 9.82) lased groups. Among parameters tested, 0.8 W/10 Hz showed the highest value (25.54 +/- 11.74). Nd:YAG laser irradiation caused dentin to melt under the adhesive layer of both adhesive systems tested. Conclusion: With the parameters used in this study, Nd:YAG laser irradiation of the hybrid layer promoted morphological changes in dentin and negatively influenced the bond strength of both adhesive systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives. The role of inorganic content on physical properties of resin composites is well known. However, its influence on polymerization stress development has not been established. The aim of this investigation was to evaluate the influence of inorganic fraction on polymerization stress and its determinants, namely, volumetric shrinkage, elastic modulus and degree of conversion. Methods. Eight experimental composites containing 1:1 BisGMA (bisphenylglycidyl dimethacrylate): TEGDMA (triethylene glycol dimethacrylate) (in mol) and barium glass at increasing concentrations from 25 to 60 vol.% (5% increments) were tested. Stress was determined in a universal test machine using acrylic as bonding substrate. Nominal polymerization stress was obtained diving the maximum load by the cross-surface area. Shrinkage was measured using a water picnometer. Elastic modulus was obtained by three-point flexural test. Degree of conversion was determined by FT-Raman spectroscopy. Results. Polymerization stress and shrinkage showed inverse relationships with filler content (R(2) = 0.965 and R(2) = 0.966, respectively). Elastic modulus presented a direct correlation with inorganic content (R(2) = 0.984). Degree of conversion did not vary significantly. Polymerization stress showed a strong direct correlation with shrinkage (R(2) = 0.982) and inverse with elastic modulus (R(2) = 0.966). Significance. High inorganic contents were associated with low polymerization stress values, which can be explained by the reduced volumetric shrinkage presented by heavily filled composites. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. To investigate the contributions of BisGMA:TEGDMA and filler content on polymerization stress, along with the influence of variables associated with stress development, namely, degree of conversion, reaction rate, shrinkage, elastic modulus and loss tangent for a series of experimental dental composites. Methods. Twenty formulations with BisGMA: TEGDMA ratios of 3: 7, 4: 6, 5: 5, 6: 4 and 7: 3 and barium glass filler levels of 40, 50, 60 or 70 wt% were studied. Polymerization stress was determined in a tensilometer, inserting the composite between acrylic rods fixed to clamps of a universal test machine and dividing the maximum load recorded by the rods cross-sectional area. Conversion and reaction rate were determined by infra-red spectroscopy. Shrinkage was measured by mercury dilatometer. Modulus was obtained by three-point bending. Loss tangent was determined by dynamic nanoindentation. Regression analyses were performed to estimate the effect of organic and inorganic contents on each studied variable, while a stepwise forward regression identified significant variables for polymerization stress. Results. All variables showed dependence on inorganic concentration and monomeric content. The resin matrix showed a stronger influence on polymerization stress, conversion and reaction rate, whereas filler fraction showed a stronger influence on shrinkage, modulus and loss tangent. Shrinkage and conversion were significantly related to polymerization stress. Significance. Both the inorganic filler concentration and monomeric content affect polymerization stress, but the stronger influence of the resin matrix suggests that it may be possible to reduce stress by modifying resin composition without sacrificing filler content. The main challenge is to develop formulations with low shrinkage without sacrificing degree of conversion. (C) 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the variations in human plasma fluoride concentrations ([F]) and sought to determine the causes. Five subjects (27-33 years old) received a low-F diet during the 5 days of the study. Plasma samples and urine were collected every 3 h from 8 a.m. to 8 p.m. F, PTH, Ca and P were analyzed with the electrode, by chemiluminescence, AAS and colorimetry, respectively. A trend for the plasma [F] was found. The peak [F], 0.55 +/- 0.11 mu mol L(-1), occurred at 11 a.m. and the lowest [F], 0.50 +/- 0.06 mu mol L(-1) occurred between 5 and 8 p.m. Plasma [F] were positively correlated with urinary F excretion rates and with serum PTH levels, but not with the Ca or P levels. Serum PTH levels were positively correlated with urinary F excretion rates and negatively correlated with plasma Ca. The results suggest that the renal system seems to control the daily fluctuations in plasma [F]. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A double-bind cross-over study was conducted on four healthy subjects, aged 19-29 years, in order to determine the relative bioavailability and other pharmacokinetics features of fluoride (F) after single oral administration in fasting conditions of 2 mg F as sodium F (NaF) or sodium monofluorophosphate (MFP). The bioavailability was evaluated on the basis of the plasma levels and of the urinary excretion of F. Blood was sampled before and during the 8 h after the administration of the test solutions. For F excretion urine was sampled 12 h before the study and over the 8 h after the administration. Data were tested for statistically significant differences by ANOVA and Tukey`s post hoc tests, and also by Student`s t-test (p < 0.05). For the two formulations, the pharmacokinetics of F in plasma was characterized by a rapid absorption and by a peak (C-max = 0.1 mu g/mL) which was reached 20 min after administration, followed by a biphasic elimination. In the 8 h following the administration the urinary excretion of F accounted for 35-41% of the administered dose, without significant differences between the two formulations. The AUCs (+/- S.D.) for NaF and MFP were 21.15 (+/- 0.58) and 19.04 (+/- 1.75) min mu g mL(-1), respectively, and were not significantly different (p = 0.079). Based on the AUC and C-max of F in plasma and on the urinary excretion of F during the 8 h following administration, the relative bioavailabilities of the two F formulations were equivalent. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the biomechanical and microscopic response of previously grafted bone to titanium implants. The lower incisors of 16 rabbits were surgically extracted, and bilateral perforations communicating with the remaining sockets were created distally. A socket/perforation defect on each mandible was chosen at random to be immediately filled with a xenogenic graft, whereas the contralateral perforation was left to heal naturally and served as a paired control. After 60 days, titanium implants were installed in the previously operated areas. After periods of 2 and 6 months, the animals were killed, and the force necessary to retrieve implants as well as the bone-implant contact (BIC) and bone mass (BM) were quantified and statistically compared by 2-way analysis of variance and Tukey`s test (alpha = .05). No significant differences in removal torque were observed, either by time or by treatment condition. Differences in BIC and BM between experimental and control groups were not statistically significant through the intervals studied (P < .05). The presence of a xenogenic graft did not influence the microscopic tissue response to titanium implants or fixation into newly formed or mature bone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our goal was to evaluate bone neoformation promoted by a bovine xenograft composite (XC) compared with autogenous graft for maxillary sinus augmentation in a rabbit model. The left maxillary sinus of 18 male rabbits was filled with 200 mg of cortical and cancellous autogenous bone and the right sinus was filled with 200 mg of a composite comprised organic and inorganic bovine matrices, pool of bBMPs and collagen. Postoperative implant intervals of 2, 4, and 8 weeks were analyzed. Differences in the bone optical density among the groups and experimental periods were evaluated by computed tomography analysis. The tissue response was evaluated by histomorphometric analysis of the newly formed bone, connective tissue and/or granulation tissue, residual material, and bone marrow. The tomographic analyses showed a maximum optical density in the 4-week period for both groups. Histologically, an inflammatory infiltrate was observed at 2 weeks in the XC group but exclusively around the organic particles of the biomaterial. Regarding to the amount of newly formed bone, no statistical differences (p > 0.05) were observed among the two treatments throughout the implant intervals. However, by the end of the 8 weeks, the quantity of bone marrow was two times greater (p < 0.05) in the control group than in the XC group. In conclusion, the xenograft composite promotes formation of new bone in a similar fashion to autogenous bone and could therefore be considered a biomaterial with potential applications as a bone substitute in maxillary sinus floor augmentation. (C) 2007 Wiley Periodicals, Inc.