154 resultados para movement optimal synthesis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our long-term objective is to devise reliable methods to generate biological replacement teeth exhibiting the physical properties and functions of naturally formed human teeth. Previously, we demonstrated the successful use of tissue engineering approaches to generate small, bioengineered tooth crowns from harvested pig and rat postnatal dental stem cells (DSCs). To facilitate characterizations of human DSCs, we have developed a novel radiographic staging system to accurately correlate human third molar tooth developmental stage with anticipated harvested DSC yield. Our results demonstrated that DSC yields were higher in less developed teeth (Stages 1 and 2), and lower in more developed teeth (Stages 3, 4, and 5). The greatest cell yields and colony-forming units (CFUs) capability was obtained from Stages 1 and 2 tooth dental pulp. We conclude that radiographic developmental staging can be used to accurately assess the utility of harvested human teeth for future dental tissue engineering applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Orthodontic tooth movement is achieved by the remodeling of alveolar bone in response to mechanical loading. Type 1 diabetes results in bone remodeling, suggesting that this disease might affect orthodontic tooth movement. The present study investigated the effects of the diabetic state on orthodontic tooth movement. An orthodontic appliance was placed in normoglycemic (NG), streptozotocin-induced diabetes (DB), and insulin-treated DB (IT) C57BL6/J mice. Histomorphometric analysis and quantitative PCR of periodontium were performed. The DB mice exhibited greater orthodontic tooth movement and had a higher number of tartrate-resistant acid phosphate (TRAP) -positive osteoclasts than NG mice. This was associated with increased expression of factors involved in osteoclast activity and recruitment (Rankl, Csf1, Ccl2, Ccl5, and Tnfa) in DB mice. The expression of osteoblastic markers (Runx2, Ocn, Col1, and Alp) was decreased in DB mice. Reversal of the diabetic state by insulin treatment resulted in morphological findings similar to those of NG mice. These results suggest that the diabetic state up-regulates osteoclast migration and activity and down-regulates osteoblast differentiation, resulting in greater orthodontic tooth movement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During orthodontic tooth movement, there is local production of chemokines and an influx of leukocytes into the periodontium. CCL5 plays an important role in osteoclast recruitment and activation. This study aimed to investigate whether the CCR5-receptor influences these events and, consequently, orthodontic tooth movement. An orthodontic appliance was placed in wild-type mice (WT) and CCR5-deficient mice (CCR5(-/-)). The expression of mediators involved in bone remodeling was evaluated in periodontal tissues by Real-time PCR. The number of TRAP-positive osteoclasts and the expression of cathepsin K, RANKL, and MMP13 were significantly higher in CCR5(-/-). Meanwhile, the expression of two osteoblastic differentiation markers, RUNX2 and osteocalcin, and that of bone resorption regulators, IL-10 and OPG, were lower in CCR5(-/-). Analysis of the data also showed that CCR5(-/-) exhibited a greater amount of tooth movement after 7 days of mechanical loading. The results suggested that CCR5 might be a down-regulator of alveolar bone resorption during orthodontic movement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-steroidal anti-inflammatory drugs (NSAIDs) have been used for pain relief in orthodontics, but clinical studies reported that they may reduce tooth movement (TM). By other side, TM seems to activate brain structures related to nociception, but the effects of NSAIDs in this activation have not been studied yet. We analyzed the effect of short-term treatment with acetaminophen or celecoxib in the separation of rat upper incisors, as well as in neuronal activation of the spinal trigeminal nucleus, following tooth movement. Thirty rats (400-420 g) were pretreated through oral gavage (1 ml/dose)with acetaminophen (200 mg/kg), celecoxib (50 mg/kg) or vehicle (carboxymethylcellulose 0.4%). After 30 min, they received an activated (30 g) orthodontic appliance for TM. In controls, this appliance was immediately removed after its introduction. Rats received ground food, and every 12 h, one of the drugs or vehicle. After 48 h, they were anesthetized, maxilla was radiographed, and were perfused with 4% paraformaldehyde. Brains were further processed for Fos immunohistochemistry. TM induced incisor distalization (p < 0.05) and neuronal activation of the spinal trigeminal nucleus. Treatment with both drugs did not affect tooth movement, but reduced c-fos expression in the caudalis subnucleus. No changes in c-fos expression were seen in the oralis and interpolaris subnuclei. We conclude that neither celecoxib nor acetaminophen seems to affect tooth movement, when used for 2 days, but both drugs are able to reduce the activation of brain structures related to nociception. Short-term treatment with celecoxib, thus, may be a therapeutic alternative to acetaminophen when the latter is contra indicated. (C) 2009 Elsevier Inc. All rights reserved.