159 resultados para VENTRAL HIPPOCAMPUS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Omega-3 polyunsaturated fatty acids (omega-3 PUFAs) have been widely associated to beneficial effects over different neuropathologies, but only a few studies associate them to Parkinson`s disease (PD). Rats were submitted to chronic supplementation (21-90 days of life) with fish oil, rich in omega-3 PUFAs, and were uni- or bilaterally lesioned with 4 mu g of the neurotoxin 6-hydroxydopamine (6-OHDA) in the medial forebrain bundle Although lipid incorporation was evidenced in neuronal membranes, it was not sufficient to compensate motor deficits induced by 6-OHDA. In contrast, omega-3 PUFAs were capable of reducing rotational behavior induced by apomorphine, suggesting neuroprotection over dyskinesia The beneficial effects of omega-3 PUFAs were also evident in the maintenance of thiobarbituric acid reactive substances index from animals lesioned with 6-OHDA similar to levels from SHAM and intact animals. Although omega-3 PUFAs did not modify the tyrosine hydroxylase immunoreactivity in the substantia nigra pars compacta and in the ventral tegmental area, nor the depletion of dopamine (DA) and its metabolites in the striatum, DA turnover was increased after omega-3 PUFAs chronic supplementation Therefore, it is proposed that omega-3 PUFAs action characterizes the adaptation of remaining neurons activity. altering striatal DA turnover without modifying the estimated neuronal population. (C) 2009 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many studies have shown that deficits in olfactory and cognitive functions precede the classical motor symptoms seen in Parkinson`s disease (PD) and that olfactory testing may contribute to the early diagnosis of this disorder. Although the primary cause of PD is still unknown, epidemiological studies have revealed that its incidence is increased in consequence of exposure to certain environmental toxins. In this study, most of the impairments presented by C57BL/6 mice infused with a single intranasal (i.n.) administration of the proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (1 mg/nostril) were similar to those observed during the early phase of PD, when a moderate loss of nigral dopamine neurons results in olfactory and memory deficits with no major motor impairments. Such infusion decreased the levels of the enzyme tyrosine hydroxylase in the olfactory bulb, striatum, and substantia nigra by means of apoptotic mechanisms, reducing dopamine concentration in different brain structures such as olfactory bulb, striatum, and prefrontal cortex, but not in the hippocampus. These findings reinforce the notion that the olfactory system represents a particularly sensitive route for the transport of neurotoxins into the central nervous system that may be related to the etiology of PD. These results also provide new insights in experimental models of PD, indicating that the i.n. administration of MPTP represents a valuable mouse model for the study of the early stages of PD and for testing new therapeutic strategies to restore sensorial and cognitive processes in PD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study we evaluated the toxic effects on the male adult rat prostate of DBP exposure during fetal and lactational periods, because although many studies have addressed the influence of phthalates on the male reproductive system, only a few have discussed their possible effects on prostate development. Pregnant females were distributed into two experimental groups: Control (C) and Treated (T). The females of the T group received DBP (100 mg/kg, by gavage) from gestation day 12 to postnatal day 21, while C rats received the vehicle (corn oil). In adulthood (90 days old), the animals were euthanized. The serum and testicular testosterone levels were measured. Ventral prostate was removed and weighed. Distal segment fragments of the ventral prostate were fixed and processed for histochemistry and immunohistochemistry to detect androgen receptor (AR) and Ki67 antigens. Protein extraction from ventral prostate fragments was performed for AR immunoblotting and Gelatin zymography for MMP-2 and MMP-9 (MMP, metalloproteinase). Stereological and histopathological analyses were also performed. Serum and testicular testosterone levels and prostate weight were comparable between groups. In the T group the relative proportions (%) of epithelial (C=32.86; T=42.04*) and stromal (C=21.61; T=27.88*) compartments were increased, while the luminal compartment was decreased (C=45.54; T=30.08*), *p < 0.05. In T, disseminated inflammatory infiltrate in the stroma, associated or not with epithelial dysplasia and PIN (Prostatic Intraepithelial Neoplasia), was observed. Increases in AR expression, proliferation index and metalloproteinase 9 (MMP-9) activity were noted in T animals. In some T animals, collagen fibrils accumulated adjacent to the epithelium. As far as we are aware, this is the first report in the literature showing that phthalates could play a role in proliferative and inflammatory disorders of the rat prostate. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a previous study, we concluded that overproduction of nitric oxide (NO) by inducible nitric Oxide synthase (iNOS) in the late phase of sepsis prevents hypothalamic activation, blunts vasopressin secretion and contributes to hypotension, irreversible shock and death. The aim of this follow-up study was to evaluate if the same neuronal activation pattern happens in brain structures related to cardiovascular functions. Male Wistar rats received intraperitoneal injections of aminoguanidine, an iNOS inhibitor, or saline 30 min before cecal ligation and puncture (CLP) or sham surgeries. The animals were perfused 6 or 24 h after the surgeries and the brains were removed and processed for Fos immunocytochemistry We observed an increase (P < 0.001) in c-fos expression 6 h after CLP in the area postrema (AP), nucleus of he tractus solitarius (NTS), ventral lateral medulla (VLM), locus coeruleus (LC) and parabrachial nucleus (PB). At 24 h after CLP, however, c-fos expression was strongly decreased in all these nuclei (P < 0.05), except for the VLM. Aminoguanidine reduced c-fos expression in the AP and NTS at 6 h after CLR but showed an opposite effect at 24 h, with an increase in the AP, NTS, and also in the VLM. No such effect was observed in the LC and PB at 6 or 24 h. In all control animals, c-fos expression was minimal or absent. We conclude that in the early phase of sepsis iNOS-derived NO may be partially responsible for the activation of brain structures related to cardiovascular regulation. During the late phase, however, this activation is reduced or abolished. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The activity of the hypothalamic-pituitary-adrenal axis is modulated by the norepinephrinergic system and, in females, also by the ovarian hormones. We investigated the role of ovarian steroids and the locus coeruleus (LC) on stress-induced corticosterone secretion in female rats. Ovariectomized rats without hormonal replacement (OVX) or treated with estradiol (OVE) or estradiol plus progesterone (OVEP) were subjected to jugular cannulation. Immediately after that, each hormonal treatment group was subjected to LC lesion or sham surgery or no brain surgery. After 24 h, blood samples of all 9 groups were collected before and after ether inhalation. Other four groups (OVX control, sham and lesioned, and OVE) were perfused for glucocorticoid receptor (GR) immunocytochemistry in hippocampal CA1 neurons and paraventricular nucleus (PVN). Estradiol replacement decreased while LC lesions increased stress-induced corticosterone secretion. The effect of LC lesion was potentiated with the removal of ovarian steroids. Since GR expression of lesioned animals decreased in the hippocampus, but not in PVN, we suggest that the effect of LC lesion on corticosterone secretion could be due to a reduction in the efficiency of the negative feedback system in the CA1 neurons. However, this mechanism is not involved in the estradiol modulation on corticosteroid secretion, as no change in GR expression was observed in estradiol-treated animals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early-life events may induce alterations in neuronal function in adulthood. A crucial aspect in studying long-lasting effects induced by environmental interventions imposed to the animal several weeks before is finding a stable change that could be causally related to the phenotype observed in adulthood. In order to explain an adult trait, it seems necessary to look back to early life and establish a temporal line between events. The neonatal handling procedure is an experimental tool to analyze the long-lasting impact of early-life events. Aside from the neuroendocrine response to stress, neonatal handling also alters the functionality of the hypothalamus-pituitary-gonad (HPG) axis. Reductions in ovulation and surge of the luteinizing hormone (LH) on the proestrous day were shown in female rats. Considering the importance of the medial preoptic area (MPA) for the control of ovulation, the present study aimed to verify the effects of neonatal handling on the numerical density and cell size in the MPA in 11-day-old and 90-day-old female rats. Cellular proliferation was also assessed using BrdU (5-bromo-2`-deoxyuridine) in 11-day-old pups. Results showed that neonatal handling induces a stable reduction in the number of cells and in the size of the cell soma, which were lower in handled females than in nonhandled ones at both ages. Cellular proliferation in the MPA was also reduced 24 h after the last manipulation. The repeated mother-infant disruption imposed by the handling procedure ""lesioned"" the MPA. The dysfunction in the ovulation mechanisms induced by the handling procedure could be related to that neuronal loss. The study also illustrates the impact of an environmental intervention on the development of the brain. (C) 2008 Elsevier B.V. All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eag1 (K(v)10.1) is the founding member of an evolutionarily conserved superfamily of voltage-gated K+ channels. In rats and humans Eag1 is preferentially expressed in adult brain but its regional distribution has only been studied at mRNA level and only in the rat at high resolution. The main aim of the present study is to describe the distribution of Eag1 protein in adult rat brain in comparison to selected regions of the human adult brain. The distribution of Eag1 protein was assessed using alkaline-phosphatase based immunohistochemistry. Eag1 immunoreactivity was widespread, although selective, throughout rat brain, especially noticeable in the perinuclear space of cells and proximal regions of the extensions, both in rat and human brain. To relate the results to the relative abundance of Eag1 transcripts in different regions of rat brain a reverse-transcription coupled to quantitative polymerase chain reaction (real time PCR) was performed. This real time PCR analysis showed high Eag1 expression in the olfactory bulb, cerebral cortex, hippocampus, hypothalamus, and cerebellum. The results indicate that Eag1 protein expression greatly overlaps with mRNA distribution in rats and humans. The physiological relevance of potassium channels in the different regions expressing Eag1 protein is discussed. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The prefrontal cortex is continuously required for working memory processing during wakefulness, but is particularly hypoactivated during sleep and in psychiatric disorders such as schizophrenia. Ammon`s horn CA1 hippocampus subfield (CA1) afferents provide a functional modulatory path that is subjected to synaptic plasticity and a prominent monoaminergic influence. However, little is known about the muscarinic cholinergic effects on prefrontal synapses. Here, we investigated the effects of the muscarinic agonist, pilocarpine (PILO), on the induction and maintenance of CA1-medial prefrontal cortex (mPFC) long-term potentiation (LTP) as well as on brain monoamine levels. Field evoked responses were recorded in urethane-anesthetized rats during baseline (50 min) and after LTP (130 min), and compared with controls. LTP was induced 20 min after PILO administration (15 mg/kg, i.p.) or vehicle (NaCl 0.15 M, i.p.). In a separate group of animals, the hippocampus and mPFC were microdissected 20 min after PILO injection and used to quantify monoamine levels. Our results show that PILO potentiates the late-phase of mPFC UP without affecting either post-tetanic potentiation or early LTP (20 min). This effect was correlated with a significant decrease in relative delta (1-4 Hz) power and an increase in sigma (10-15 Hz) and gamma (2540 Hz) powers in CA1. Monoamine levels were specifically altered in the mPFC. We observed a decrease in dopamine, 5-HT, 5-hydroxyindolacetic acid and noradrenaline levels, with no changes in 3,4-hydroxyphenylacetic acid levels. Our data, therefore, suggest that muscarinic activation exerts a boosting effect on mPFC synaptic plasticity and possibly on mPFC-dependent memories, associated to monoaminergic changes. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is evidence that nitric oxide plays a role in the neurotransmitter balance within the basal ganglia and in the pathology of Parkinson`s disease. In the present work we investigated in striatal 6-hydroxydopamine (6-OHDA) lesioned rats the effects of a nitric oxide synthase (NOS) inhibitor, NG-nitro-L-arginine (L-NOARG), given systemically on both the dopaminergic (DA) neuronal loss and the neuronal NOS cell density. We analyzed the DA neuronal loss through tyrosine hydroxylase immunohistochemistry (TH). The nitrergic system was evaluated using an antibody against the neuronal NOS (nNOS) isoform. Treatment with the L-NOARG significantly reduced 6-OHDA-induced dopaminergic damage in the dorsal striatum, ventral substantia nigra and lateral globus pallidus, but had no effects in the dorsal substantia nigra and in the cingulate cortex. Furthermore, L-NOARG reduced 6-OHDA-induced striatal increase, and substantia nigra compacta decrease, in the density of neuronal nitric oxide synthase positive cells. These results suggest that nitric oxide synthase inhibition may decrease the toxic effects of 6-OHDA on dopaminergic terminals and on dopamine cell bodies in sub-regions of the SN and on neuronal nitric oxide synthase cell density in the rat brain. (c) 2008 Elsevier B.V. All rights reserved.