259 resultados para State dependent rules
Resumo:
In this paper we provide a recipe for state protection in a network of oscillators under collective damping and diffusion. Our strategy is to manipulate the network topology, i.e., the way the oscillators are coupled together, the strength of their couplings, and their natural frequencies, in order to create a relaxation-diffusion-free channel. This protected channel defines a decoherence-free subspace (DFS) for nonzero-temperature reservoirs. Our development also furnishes an alternative approach to build up DFSs that offers two advantages over the conventional method: it enables the derivation of all the network-protected states at once, and also reveals, through the network normal modes, the mechanism behind the emergence of these protected domains.
Resumo:
Lead fluoroborate glasses were prepared by the melt-quenching technique and characterized in terms of (micro)structural and electrical properties. The study was conducted on as prepared as well as temperature- and/or electric field-treated glass samples. The results show that, in the as-prepared glassy-state materials, electrical conductivity improved with increasing the PbF(2) glass content. This result involves both an increase of the fluoride charge carrier density and, especially, a decrease of the activation energy from a glass structure expansion improving charge carrier mobility. Moreover, for the electric field-treated glass samples, surface crystallization was observed even below the glass transition temperature. As previously proposed in literature, and shown here, the occurrence of this phenomenon arose from an electrochemically induced redox reaction at the electrodes, followed by crystallite nucleation. Once nucleated, growth of beta-PbF(2) crystallites, with the indication of incorporating reduced lead ions (Pb(+)), was both (micro)structurally and electrically detectable and analyzed. The overall crystallization-associated features observed here adapt well with the floppy-rigid model that has been proposed to further complete the original continuous-random-network model by Zachariasen for closely addressing not only glasses' structure but also crystallization mechanism. Finally, the crystallization-modified kinetic picture of the glasses' electrical properties, through application of polarization/depolarization measurements originally combined with impedance spectroscopy, was extensively explored. (c) 2008 American Institute of Physics.
Resumo:
In this report, the application of a class of separated local field NMR experiments named dipolar chemical shift correlation (DIPSHIFT) for probing motions in the intermediate regime is discussed. Simple analytical procedures based on the Anderson-Weiss (AW) approximation are presented. In order to establish limits of validity of the AW based formulas, a comparison with spin dynamics simulations based on the solution of the stochastic Liouville-von-Neumann equation is presented. It is shown that at short evolution times (less than 30% of the rotor period), the AW based formulas are suitable for fitting the DIPSHIFT curves and extracting kinetic parameters even in the case of jumplike motions. However, full spin dynamics simulations provide a more reliable treatment and extend the frequency range of the molecular motions accessible by DIPSHIFT experiments. As an experimental test, molecular jumps of imidazol methyl sulfonate and trimethylsulfoxonium iodide, as well as the side-chain motions in the photoluminescent polymer poly[2-methoxy-5-(2(')-ethylhexyloxy)-1,4-phenylenevinylene], were characterized. Possible extensions are also discussed. (c) 2008 American Institute of Physics.
Resumo:
The present work shows study of the CO(2) capture by amidines DBN and PMDBD using (13)C solid-state NMR and thermal techniques. The solid state (13)C NMR analyses demonstrate the formation of a single PMDBD-CO(2) product which was assigned to stable bicarbonate. In the case of DBN, it is shown that two DBN-CO(2) products are formed, which are suggested to be stable bicarbonate and unstable carbamate. The role of water in the DBN-CO(2) capture as well as the stability of the products to environmental moisture was also investigated. The results suggest that the carbamate formation is favored in dry DBN, but in the presence of water it decompose to form bicarbonate. Thermal analysis shows a good gravimetric CO(2) absorption of DBN. Release of CO(2) was found to be almost quantitative from the PMDBDH(+) bicarbonate about 110 degrees C.
Resumo:
We have developed a nonlocal functional of the exchange interaction for the ground-state energy of quantum spin chains described by the Heisenberg Hamiltonian. An alternating chain is used to obtain the correlation energy and a local unit-cell approximation is defined in the context of the density-functional theory. The agreement with our exact numerical data, for small chains, is significantly better than a previous formulation, even for chains with several ferromagnetic or antiferromagnetic bond defects. The results can be particularly relevant in the study of finite spin-1/2 Heisenberg chains, with exchange couplings changing, magnitude, or even sign, from bond-to-bond.
Resumo:
Energy gaps are crucial aspects of the electronic structure of finite and extended systems. Whereas much is known about how to define and calculate charge gaps in density-functional theory (DFT), and about the relation between these gaps and derivative discontinuities of the exchange-correlation functional, much less is known about spin gaps. In this paper we give density-functional definitions of spin-conserving gaps, spin-flip gaps and the spin stiffness in terms of many-body energies and in terms of single-particle (Kohn-Sham) energies. Our definitions are as analogous as possible to those commonly made in the charge case, but important differences between spin and charge gaps emerge already on the single-particle level because unlike the fundamental charge gap spin gaps involve excited-state energies. Kohn-Sham and many-body spin gaps are predicted to differ, and the difference is related to derivative discontinuities that are similar to, but distinct from, those usually considered in the case of charge gaps. Both ensemble DFT and time-dependent DFT (TDDFT) can be used to calculate these spin discontinuities from a suitable functional. We illustrate our findings by evaluating our definitions for the Lithium atom, for which we calculate spin gaps and spin discontinuities by making use of near-exact Kohn-Sham eigenvalues and, independently, from the single-pole approximation to TDDFT. The many-body corrections to the Kohn-Sham spin gaps are found to be negative, i.e., single-particle calculations tend to overestimate spin gaps while they underestimate charge gaps.
Resumo:
The exact exchange-correlation (XC) potential in time-dependent density-functional theory (TDDFT) is known to develop steps and discontinuities upon change of the particle number in spatially confined regions or isolated subsystems. We demonstrate that the self-interaction corrected adiabatic local-density approximation for the XC potential has this property, using the example of electron loss of a model quantum well system. We then study the influence of the XC potential discontinuity in a real-time simulation of a dissociation process of an asymmetric double quantum well system, and show that it dramatically affects the population of the resulting isolated single quantum wells. This indicates the importance of a proper account of the discontinuities in TDDFT descriptions of ionization, dissociation or charge transfer processes.
Resumo:
Given the polarity dependent effects of transcranial direct current stimulation (tDCS) in facilitating or inhibiting neuronal processing, and tDCS effects on pitch perception, we tested the effects of tDCS on temporal aspects of auditory processing. We aimed to change baseline activity of the auditory cortex using tDCS as to modulate temporal aspects of auditory processing in healthy subjects without hearing impairment. Eleven subjects received 2mA bilateral anodal, cathodal and sham tDCS over auditory cortex in a randomized and counterbalanced order. Subjects were evaluated by the Random Gap Detection Test (RGDT), a test measuring temporal processing abilities in the auditory domain, before and during the stimulation. Statistical analysis revealed a significant interaction effect of time vs. tDCS condition for 4000 Hz and for clicks. Post-hoc tests showed significant differences according to stimulation polarity on RGDT performance: anodal improved 22.5% and cathodal decreased 54.5% subjects' performance, as compared to baseline. For clicks, anodal also increased performance in 29.4% when compared to baseline. tDCS presented polarity-dependent effects on the activity of the auditory cortex, which results in a positive or negative impact in a temporal resolution task performance. These results encourage further studies exploring tDCS in central auditory processing disorders.
Resumo:
Background: The aim of the present study was to evaluate the protective effects of the 4-anilinoquinazoline derivative PD153035 on cardiac ischemia/reperfusion and mitochondrial function. Methodology/Principal Findings: Perfused rat hearts and cardiac HL-1 cells were used to determine cardioprotective effects of PD153035. Isolated rat heart mitochondria were studied to uncover mechanisms of cardioprotection. Nanomolar doses of PD153035 strongly protect against heart and cardiomyocyte damage induced by ischemia/reperfusion and cyanide/aglycemia. PD153035 did not alter oxidative phosphorylation, nor directly prevent Ca(2+) induced mitochondrial membrane permeability transition. The protective effect of PD153035 on HL-1 cells was also independent of AKT phosphorylation state. Interestingly, PD153035 activated K(+) transport in isolated mitochondria, in a manner prevented by ATP and 5-hydroxydecanoate, inhibitors of mitochondrial ATP-sensitive K(+) channels (mitoK(ATP)). 5-Hydroxydecanoate also inhibited the cardioprotective effect of PD153035 in cardiac HL-1 cells, demonstrating that this protection is dependent on mitoK(ATP) activation. Conclusions/Significance: We conclude that PD153035 is a potent cardioprotective compound and acts in a mechanism involving mitoK(ATP) activation.
Resumo:
Extensive ab initio calculations using a complete active space second-order perturbation theory wavefunction, including scalar and spin-orbit relativistic effects with a quadruple-zeta quality basis set were used to construct an analytical potential energy surface (PES) of the ground state of the [H, O, I] system. A total of 5344 points were fit to a three-dimensional function of the internuclear distances, with a global root-mean-square error of 1.26 kcal mol(-1). The resulting PES describes accurately the main features of this system: the HOI and HIO isomers, the transition state between them, and all dissociation asymptotes. After a small adjustment, using a scaling factor on the internal coordinates of HOI, the frequencies calculated in this work agree with the experimental data available within 10 cm(-1). (C) 2011 American Institute of Physics. [doi: 10.1063/1.3615545]
Resumo:
The alternative low-spin states of Fe3+ and Fe2+ cytochrome c induced by SDS or AOT/hexane reverse micelles exhibited the heme group in a less rhombic symmetry and were characterized by electron paramagnetic resonance, UV-visible, CD, magnetic CD, fluorescence, and Raman resonance. Consistent with the replacement of Met 80 by another strong field ligand at the sixth heme iron coordination position, Fe3+ ALSScytc exhibited 1-nm Soret band blue shift and e enhancement accompanied by disappearance of the 695-nm charge transfer band. The Raman resonance, CD, and magnetic CD spectra of Fe3+ and Fe2+ ALSScytc exhibited significant changes suggestive of alterations in the heme iron microenvironment and conformation and should not be assigned to unfold because the Trp(59) fluorescence remained quenched by the neighboring heme group. ALSScytc was obtained with His(33) and His(26) carboxyethoxylated horse cytochrome c and with tuna cytochrome c (His(33) replaced by Asn) pointing out Lys(79) as the probable heme iron ligand. Fe3+ ALSScytc retained the capacity to cleave tert-butylhydroperoxide and to be reduced by dithiothreitol and diphenylacetaldehyde but not by ascorbate. Compatible with a more open heme crevice, ALSScytc exhibited a redox potential similar to 200 mV lower than the wild-type protein (1220 mV) and was more susceptible to the attack of free radicals.
Resumo:
This article analyzes the Brazilian political system from the local perspective. Following Cox (1997), we review the problems with electoral coordination that emerge from a given institutional framework. Due to the characteristics of the Brazilian Federal system and its electoral rules, linkage between the three levels of government is not guaranteed a priori, but demands a coordinating effort by the parties' leadership. According to our hypothesis, the parties are capable of coordinating their election strategies at different levels in the party system. Regression models based on two-stage least squares (2SLS) and TOBIT, analyzing a panel of Brazilian municipalities with data from the 1994 and 2000 elections, show that the proportion of votes received by a party in a given election correlates closely with its previous votes in majoritarian elections. Despite institutional incentives, the Brazilian party system shows evidence that it is organized nationally to the extent that it links the competition for votes at the three levels of government (National, State, and Municipal).
Resumo:
The present study investigates the effects of drill cutting discharges on the structure of meiofauna communities in an area of the shelf break at Campos Basin, Southeast Brazil. Drilling activities were operated, in a first phase, with water-based fluid and, in a second phase, with synthetic fluid paraffin-based (NAF-III). A total of 135 samples taken at a pre-drilling situation (MS1) and two post-drilling moments (MS2 and MS3-3 and 22 months post-drilling, respectively) were analyzed. Effects on meiofauna were dependent on two main factors: 1-the impact received during drilling operation, if water-based or synthetic/water-based drilling fluid and 2-the background state, if it already presented signs of previous drilling activities or not. Based on univariate and multivariate analysis, there were evidences that the most affected area after drilling was those under the influence of synthetic-based fluid and that already had signs of previous drillings activities. The region impacted only by water-based fluid was less affected and the only one that completely recovered after 22 months. Nematodes and copepods had different responses to the impact. While copepods flourish in the impacted area and recovered 22 months after drilling, nematodes were adversely affected shortly after drilling and the community structure only recovered where hydrocarbons had been depleted.
Resumo:
Sedimentary organic matter is a good tool for environmental evaluation where the sediments are deposited. We determined the elemental and C- and N-isotopic compositions of 211 sub-surface sediment samples from 13 cores (ranging from 18 to 46cm), collected in the Cananeia-Iguape estuarine-lagoonal system. The aim of this research is to evaluate the environmental variations of this tropical coastal micro-tidal system over the last decades, through SOM distribution. The studied parameters show differences between the cores located in the northern (sandy-silt sediments) and southern (sand and silty-sand) portions. The whole area presents a mixed organic matter origin signature (local mangrove plants: < -25.6 parts per thousand PDB/ phytoplancton delta(13)C values: -19.4 parts per thousand PDB). The northern cores, which submitted higher sedimentation deposition (1.46cm year(-1)), are more homogenous, presenting lower delta(13)C (< -25.2 parts per thousand PDB) and higher C/N values (in general >14), directly related to the terrestrial input from Ribeira de Iguape River (24,000 km(2) basin). The southern portion presents lower sedimentation rates (0.38cm year(-1)) and is associated to a small river basin (1,340 km(2)), presenting values Of delta(13)C: -25.0 to 23.0 parts per thousand PDB and of C/N ratio: 11 to 15. In general, the elemental contents in the 15 cores may be considered from low to medium (< 2.0% C - < 0.1% N), compared to similar environments. Although a greater marine influence is observed in the southern system portion, the majority of the cores present an elevated increase of continental deposition, most likely related to the strong silting process that the area has been subjected to since the 1850s, when an artificial channel was built linking, directly, the Ribeira River to the estuarine-lagoonal system.
Resumo:
Examination of the mechanisms involved in the construction of present-day vegetative deposits along coastal waterways has made it possible to establish depositional patterns that can be compared with those found in similar environments in geologic time. These patterns include not only the composition and transport of the debris but also an estimation of the time involved in its deposition. Six sites with active deposits of plant macrodebris in the coastal basin of the Itanhaem River, Sao Paulo State, Brazil, were used in the study. In the central portion of the basin, the interior coastal plain is covered with restinga forest (dense, wet tropical forest of low altitudes), while the lower portion consists of mangrove swamps. The coast reflects anthropogenic intervention, and only a few scattered remnants of precolonization dune vegetation remain. The results after three years of study suggest that the accumulation of plant macrodebris in the middle and lower portions of the basin is parautochthonous, since only the leaves of genera typical of the restinga forest and mangrove swamp, respectively, were found. Along the coast the accumulations involved a mixture of parautochthonous and allochthonous elements. On the levee of the Branco River and within the mangrove swamp, deposition was slow, and many of the elements decayed quickly; such accumulations show little potential for preservation and eventual fossilization. A different site, however, reveals the rapid deposition of thick layers of plant debris, presumably associated with storms, and these accumulations are preserved for long periods, constituting good candidates for possible fossilization.