156 resultados para Rt-Pcr


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The surface of midgut cells in Hemiptera is ensheathed by a lipoprotein membrane (the perimicrovillar membrane), which delimits a closed compartment with the microvillar membrane, the so-called perimicrovillar space. In Dysdercus peruvianus midgut perimicrovillar space a soluble aminopeptidase maybe involved in the digestion of oligopeptides and proteins ingested in the diet. This D. peruvianus aminopeptidase was purified to homogeneity by ion-exchange chromatography on an Econo-Q column, hydrophobic interaction chromatography on phenyl-agarose column and preparative polyacrylamide gel electrophoresis. The results suggested that there is a single molecular species of aminopeptidase in D. peruvianus midgut. Molecular mass values for the aminopeptidase were estimated to be 106 kDa (gel filtration) and 55 kDa (SDS-PAGE), suggesting that the enzyme occurs as a dimer under native conditions. Kinetic data showed that D. peruvianus aminopeptidase hydrolyzes the synthetic substrates LpNA, RpNA, A beta NA and AsnMCA (K(m)s 0.65, 0.14, 0.68 and 0.74 mM, respectively). The aminopeptidase activity upon LpNA was inhibited by EDTA and 1,10-phenanthroline, indicating the importance of metal ions in enzyme catalysis. One partial sequence of BLAST-identified aminopeptidase was found by random sequencing of the D. peruvianus midgut cDNA library. Semi-quantitative RT-PCR analysis showed that the aminopeptidase genes were expressed throughout the midgut epithelium, in the epithelia of V1, V2 and V3. Malphigian tubules and fat body, but it was not expressed in the salivary glands. These results are important in furthering our understanding of the digestive process in this pest species. (c) 2010 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Schistosomiasis affects more than 200 million people worldwide; another 600 million are at risk of infection. The schistosomulum stage is believed to be the target of protective immunity in the attenuated cercaria vaccine model. In an attempt to identify genes up-regulated in the schistosomulum stage in relation to cercaria, we explored the Schistosoma mansoni transcriptome by looking at the relative frequency of reads in EST libraries from both stages. The 400 genes potentially up-regulated in schistosomula were analyzed as to their Gene Ontology categorization, and we have focused on those encoding-predicted proteins with no similarity to proteins of other organisms, assuming they could be parasite-specific proteins important for survival in the host. Up-regulation in schistosomulum relative to cercaria was validated with real-time reverse transcription polymerase chain reaction (RT-PCR) for five out of nine selected genes (56%). We tested their protective potential in mice through immunization with DNA vaccines followed by a parasite challenge. Worm burden reductions of 16-17% were observed for one of them, indicating its protective potential. Our results demonstrate the value and caveats of using stage-associated frequency of ESTs as an indication of differential expression coupled to DNA vaccine screening in the identification of novel proteins to be further investigated as potential vaccine candidates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Schistosoma mansoni is a well-adapted blood-dwelling parasitic helminth, persisting for decades in its human host despite being continually exposed to potential immune attack. Here, we describe in detail micro-exon genes (MEG) in S. mansoni, some present in multiple copies, which represent a novel molecular system for creating protein variation through the alternate splicing of short (<= 36 bp) symmetric exons organized in tandem. Analysis of three closely related copies of one MEG family allowed us to trace several evolutionary events and propose a mechanism for micro-exon generation and diversification. Microarray experiments show that the majority of MEGs are up-regulated in life cycle stages associated with establishment in the mammalian host after skin penetration. Sequencing of RT-PCR products allowed the description of several alternate splice forms of micro-exon genes, highlighting the potential use of these transcripts to generate a complex pool of protein variants. We obtained direct evidence for the existence of such pools by proteomic analysis of secretions from migrating schistosomula and mature eggs. Whole-mount in situ hybridization and immunolocalization showed that MEG transcripts and proteins were restricted to glands or epithelia exposed to the external environment. The ability of schistosomes to produce a complex pool of variant proteins aligns them with the other major groups of blood parasites, but using a completely different mechanism. We believe that our data open a new chapter in the study of immune evasion by schistosomes, and their ability to generate variant proteins could represent a significant obstacle to vaccine development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2,4-Dinitrophenol (DNP) is classically known as a mitochondrial uncoupler and, at high concentrations, is toxic to a variety of cells. However, it has recently been shown that, at subtoxic concentrations, DNP protects neurons against a variety of insults and promotes neuronal differentiation and neuritogenesis. The molecular and cellular mechanisms underlying the beneficial neuroactive properties of DNP are still largely unknown. We have now used DNA microarray analysis to investigate changes in gene expression in rat hippocampal neurons in culture treated with low micromolar concentrations of DNP. Under conditions that did not affect neuronal viability, high-energy phosphate levels or mitochondrial oxygen consumption, DNP induced up-regulation of 275 genes and down-regulation of 231 genes. Significantly, several up-regulated genes were linked to intracellular cAMP signaling, known to be involved in neurite outgrowth, synaptic plasticity, and neuronal survival. Differential expression of specific genes was validated by quantitative RT-PCR using independent samples. Results shed light on molecular mechanisms underlying neuroprotection by DNP and point to possible targets for development of novel therapeutics for neurodegenerative disorders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been postulated that noncoding RNAs (ncRNAs) are involved in the posttranscriptional control of gene expression, and may have contributed to the emergence of the complex attributes observed in mammalians. We show here that the complement of ncRNAs expressed from intronic regions of the human and mouse genomes comprises at least 78,147 and 39,660 transcriptional units, respectively. To identify conserved intronic sequences expressed in both humans and mice, we used custom-designed human cDNA microarrays to separately interrogate RNA from mouse and human liver, kidney, and prostate tissues. An overlapping tissue expression signature was detected for both species, comprising 198 transcripts; among these, 22 RNAs map to intronic regions with evidence of evolutionary conservation in humans and mice. Transcription of selected human-mouse intronic ncRNAs was confirmed using strand-specific RT-PCR. Altogether, these results support an evolutionarily conserved role of intronic ncRNAs in human and mouse, which are likely to be involved in the fine tuning of gene expression regulation in different mammalian tissues. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The 195-bp satellite DNA is the most abundant Trypanosoma cruzi repetitive sequence. Here we show by RNA blotting and RT-PCR that 195 SAT is intensely transcribed. We observed a positive correlation between the level of satellite RNA and the abundance of the satellite copies in the genome of T cruzi strains and that the satellite expression is not developmentally regulated. By analyzing CL Brener individual reads, we estimated that 195 SAT corresponds to approximately 5% of the CL Brener genome. 195 SAT elements were found in only 37 annotated contigs, indicating that a large number of satellite copies were not incorporated into the assembled data. The assembled satellite units are distributed in non-syntenic regions with Trypanosoma brucei and Leishmania major genomes, enriched with surface proteins, retroelements, RHS and hypothetical proteins. Satellite repeats were not observed in annotated subtelomeric regions. We report that 12 satellite sequences are truncated by the retroelement VIPER. (C) 2008 Elsevier B.V. All rights reserved.