167 resultados para RELATIVISTIC ENERGIES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extensive ab initio calculations using a complete active space second-order perturbation theory wavefunction, including scalar and spin-orbit relativistic effects with a quadruple-zeta quality basis set were used to construct an analytical potential energy surface (PES) of the ground state of the [H, O, I] system. A total of 5344 points were fit to a three-dimensional function of the internuclear distances, with a global root-mean-square error of 1.26 kcal mol(-1). The resulting PES describes accurately the main features of this system: the HOI and HIO isomers, the transition state between them, and all dissociation asymptotes. After a small adjustment, using a scaling factor on the internal coordinates of HOI, the frequencies calculated in this work agree with the experimental data available within 10 cm(-1). (C) 2011 American Institute of Physics. [doi: 10.1063/1.3615545]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report in this paper the effect of temperature on the oscillatory electro-oxidation of methanol on polycrystalline platinum in aqueous sulfuric acid media. Potential oscillations were studied under galvanostatic control and at four temperatures ranging from 5 to 35 degrees C. For a given temperature, the departure from thermodynamic equilibrium does not affect the oscillation period and results in a slight increase of the oscillation amplitude. Apparent activation energies were also evaluated in voltammetric and chronoamperometric experiments and were compared to those obtained under oscillatory conditions. In any case, the apparent activation energies values fell into the region between 50 and 70 kJ mol(-1). Specifically under oscillatory conditions an apparent activation energy of 60 +/- 3 kJ mol(-1) and a temperature coefficient q(10) of about 2.3 were observed. The present findings extend our recently published report (J. Phys. Chem. A, 2008, 112, 4617) on the temperature effect on the oscillatory electro-oxidation of formic acid. We found that, despite the fact that both studies were carried out under similar conditions, unlike the case of formic acid, only conventional, Arrhenius, dynamics was observed for methanol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the fact that the majority of the catalytic electro-oxidation of small organic molecules presents oscillatory kinetics under certain conditions, there are few systematic studies concerning the influence of experimental parameters on the oscillatory dynamics. Of the studies available, most are devoted to C1 molecules and just some scattered data are available for C2 molecules. We present in this work a comprehensive study of the electro-oxidation of ethylene glycol on polycrystalline platinum surfaces and in alkaline media. The system was studied by means of electrochemical impedance spectroscopy, cyclic voltammetry, and chronoamperometry, and the impact of parameters such as applied current, ethylene glycol concentration, and temperature were investigated. As in the case of other parent systems, the instabilities in this system were associated with a hidden negative differential resistance, as identified by impedance data. Very rich and robust dynamics were observed, including the presence of harmonic and mixed mode oscillations and chaotic states, in some parameter region. Oscillation frequencies of about 16 Hz characterized the fastest oscillations ever reported for the electro-oxidation of small organic molecules. Those high frequencies were strongly influenced by the electrolyte pH and far less affected by the EG concentration. The system was regularly dependent on temperature under voltammetric conditions but rather independent within the oscillatory regime.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of absorption refrigeration systems has had increasing importance in recent years due to the fact that the primary energy that is used in an absorption system can be heat available from a residual source or even a renewable one. Therefore, these systems not only use energy that would be rejected by the environment, but also they avoid the consumption of expensive fossil or electrical energies. The production cost of the mechanical work necessary to obtain a kW of refrigeration for mechanical compression cycle is normally higher than the cost for recovering the needed heat to obtain the same kW in an absorption cycle. Also, the use of these systems reduces impact on the environment by decreasing the emission of CO(2). We intend to show the performance of a hybrid absorption-ejecto compression chiller compared to conventional double- and single-effect water/lithium bromide systems, by means of an exergetic and exergoeconomic analysis of these configurations in order to calculate the exergy-based cost of a final product. The vapor compression refrigeration system is included in the results, as a comparisson to the performance of the absorption refrigeration systems analyzed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A key issue in the design of tyres is their capability to sustain intense impact loads. Hence, the development of a reliable experimental data basis is important, against which numerical models can be compared. Experimental data on tyre impact in the open literature is somewhat rare. In this article, a specially design rig was developed for tyre impact tests. It holds the test piece in a given position, allowing a drop mass with a round indenter to hit pressurised tyres with different impact energies. A high-speed camera and a laser velocimeter were used to track the impact event. From the laser measurement it was possible to obtain the impact force and the local indentation. A finite element study was then conducted using material properties from the open literature. By comparing the experimental measurements with the numerical results, it became evident that the model was capable of predicting the major features of the impact of a mass on a tyre. This model is therefore of value for the assessment of the performance of a tyre in extreme cases of mass impact. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work is to study the reaction rate and the morphology of intermediate reaction products during iron ore reduction when iron ore and carbonaceous materials are agglomerated together with or without Portland cement. The reaction was performed at high temperatures, and used small size samples in order to minimise heat transfer constraints. Coke breeze and pure graphite were the carbonaceous materials employed. Portland cement was applied as a binder, and pellet diameters were in the range 5.6-6.5 mm. The experimental technique involved the measurement of the pellet weight loss, as well as the interruption of the reaction at different stages, in order to submit the partially reduced pellet to scanning electron microscopy. The experimental temperature was in the range 1423-1623 K, and the total reaction time varied from 240 to 1200 s. It was observed that above 1523 K the formation of liquid slag occurred inside the pellets, which partially dissolved iron oxides. The apparent activation energies obtained were 255 kJ mol(-1) for coke breeze containing pellets, and 230 kJ mol(-1) for those pellets containing graphite. It was possible to avoid heat transfer control of the reaction rate up to 1523 K by employing small composite pellets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanomaterials have triggered excitement in both fundamental science and technological applications in several fields However, the same characteristic high interface area that is responsible for their unique properties causes unconventional instability, often leading to local collapsing during application Thermodynamically, this can be attributed to an increased contribution of the interface to the free energy, activating phenomena such as sintering and grain growth The lack of reliable interface energy data has restricted the development of conceptual models to allow the control of nanoparticle stability on a thermodynamic basis. Here we introduce a novel and accessible methodology to measure interface energy of nanoparticles exploiting the heat released during sintering to establish a quantitative relation between the solid solid and solid vapor interface energies. We exploited this method in MgO and ZnO nanoparticles and determined that the ratio between the solid solid and solid vapor interface energy is 11 for MgO and 0.7 for ZnO. We then discuss that this ratio is responsible for a thermodynamic metastable state that may prevent collapsing of nanoparticles and, therefore, may be used as a tool to design long-term stable nanoparticles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work is to study the reaction rate and the morphology of the intermediary reaction products during reduction of iron ore, when iron ore and carbonaceous material are agglomerated together as a carbon composite iron ore pellet. The reaction was performed at high temperatures, and in order to avoid heat transfer constraints small size samples were used. The carbonaceous materials employed were coke breeze and pure graphite. Portland cement was employed as a binder, and the pellets diameter was 5.2 mm. The experimental technique involved the measurement of the pellets weight loss, as well as interruption of the reaction at different stages in order to submit the partially reduced pellet to scanning electron microscopy. It has been observed that above 1523 K there is the formation of liquid slag inside the pellets, which partially dissolves iron oxides. The apparent activation energies obtained were 255 kJ/mol for coke breeze containing pellets, and 230 kJ/mol for those pellets containing graphite. It was possible to avoid heat transfer control of the reaction rate up to 1523 K by employing small composite pellets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A processing route has been developed for recovering the desired lambda fiber in iron-silicon electrical steel needed for superior magnetic properties in electric motor application. The lambda fiber texture is available in directionally solidified iron-silicon steel with the < 001 > columnar grains but was lost after heavy rolling and recrystallization required for motor laminations. Two steps of light rolling each followed by recrystallization were found to largely restore the desired fiber texture. This strengthening of the < 001 > fiber texture had been predicted on the basis of the strain-induced boundary migration (SIBM) mechanism during recrystallization of lightly rolled steel from existing grains of near the ideal orientation, due to postulated low stored energies. Taylor and finite element models supported the idea of the low stored energy of the lambda fiber grains. The models also showed that the lambda fiber grains, though unstable during rolling, only rotated away from their initial orientations quite slowly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A rigorous derivation of non-linear equations governing the dynamics of an axially loaded beam is given with a clear focus to develop robust low-dimensional models. Two important loading scenarios were considered, where a structure is subjected to a uniformly distributed axial and a thrust force. These loads are to mimic the main forces acting on an offshore riser, for which an analytical methodology has been developed and applied. In particular, non-linear normal modes (NNMs) and non-linear multi-modes (NMMs) have been constructed by using the method of multiple scales. This is to effectively analyse the transversal vibration responses by monitoring the modal responses and mode interactions. The developed analytical models have been crosschecked against the results from FEM simulation. The FEM model having 26 elements and 77 degrees-of-freedom gave similar results as the low-dimensional (one degree-of-freedom) non-linear oscillator, which was developed by constructing a so-called invariant manifold. The comparisons of the dynamical responses were made in terms of time histories, phase portraits and mode shapes. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports theoretical and experimental studies of gas-phase fragmentation reactions of four naturally occurring isoflavones. The samples were analyzed in negative ion mode by direct infusion in ESI-QqQ, ESI-QqTOF and ESI-Orbitrap systems. The MS/MS and MS(n) spectra are in agreement with the fragmentation proposals and high-resolution analyses have confirmed the formulae for each ion observed. As expected, compounds with methoxyl aromatic substitution have showed a radical elimination of center dot CH(3) as the main fragmentation pathway. A second radical loss (center dot H) occurs as previously observed for compounds which exhibit a previous homolytic center dot CH(3) cleavage (radical anion) and involves radical resonance to stabilize the anion formed. However, in this study we suggest another mechanism for the formation of the main ions, on the basis of the enthalpies for each species. Compounds without methoxy substituent dissociate at the highest energies and exhibit the deprotonated molecule as the most intense ion. Finally, energy-resolved experiments were carried out to give more details about the gas-phase dissociation reaction of the isoflavones and the results are in agreement with the theoretical approaches. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrospray ionization mass spectrometric analysis of lapachol (2-hydroxy-3-(3-methy1-2-butenyl)-1,4-naphthoquinone) was accomplished in order to elucidate the gas-phase dissociation reactions of this important biologically active natural product. The occurrence of protonated and cationized species in the positive mode and of deprotonated species in the negative mode was explored by means of collision-induced dissociation (CID) experiments. For the protonated molecule, the H(2)O and C(4)H(8) losses occur by two competitive channels. For the deprotonated molecule, the even-electron rule is not conserved, and the radicalar species are eliminated by formation of distonic anions. The fragmentation mechanism for each ion was suggested on the basis of computational thermochemistry. Atomic charges, relative energies, and frontier orbitals were employed aiming at a better understanding of the gas-phase reactivity of lapachol. Potential energy surfaces for fragmentation reactions were obtained by the B3LYP/6-31+G(d,p) model. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A computational study of the isomers of tetrafluorinated [2.2]cyclophanes persubstituted in one ring, namely F-4-[2.2]paracyclophane (4), F-4-anti-[2.2]metacyclophane (5a), F-4-syn-[2.2]metacyclophane (5b), and F-4-[2.2]metaparacyclophane (6a and 6b), was carried out. The effects of fluorination on the geometries, relative energies, local and global aromaticity, and strain energies of the bridges and rings were investigated. An analysis of the electron density by B3PW91/6-31+G(d,p), B3LYP/6-31+G(d,p), and MP2/6-31+G(d,p) was carried out using the natural bond orbitals (NBO), natural steric analysis (NSA), and atoms in molecules (AIM) methods. The analysis of frontier molecular orbitals (MOs) was also employed. The results indicated that the molecular structure of [2.2]paracyclophane is the most affected by the fluorination. Isodesmic reactions showed that the fluorinated rings are more strained than the nonfluorinated ones. The NICS, HOMA, and PDI criteria evidenced that the fluorination affects the aromaticity of both the fluorinated and the nonfluorinated rings. The NBO and NSA analyses gave an indication that the fluorination increases not only the number of through-space interactions but also their magnitude. The AIM analysis suggested that the through-space interactions are restricted to the F-4-[2.2]metacyclophanes. In addition, the atomic properties, computed over the atomic basins, shave evidence that not only the substitution, but also the position of the bridges could affect the atomic charges. the first atomic moments, and the atomic volumes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The trans-[RUCl(2)(L)(4)], trans-[Ru(NO)Cl (L)(4)](PF(6))(2) (L = isonicotinamide and 4-acetylpyridine) and trans-[Ru(NO)(OH)(py)(4)]Cl(2) (py = pyridine) complexes have been prepared and characterized by elemental analysis, UV-visible, infrared, and (1)H NMR spectroscopies, and cyclic voltammetry. The MLCT band energies of trans-[RUCl(2)(L)(4) increase in the order 4-acpy < isn < py. The reduction potentials of trans-[RuCl(2)(L)(4)] and trans-[Ru(NO)Cl(L)(4)](2+) increase in the order py < isn < 4-acpy. The stretching band frequency. v(NO), of the nitrosyl complexes ranges from 1913 to 1852 cm(-1) indicating a nitrosonium character for the NO ligand. Due to the large pi-acceptor ability of the equatorial ligands, the coordinated water is much more acidic in the water soluble trans-[Ru(NO)(H(2)O)(py)(4)](3+) than in trans-[Ru(NO)(H(2)O)(NH(3))(4)](3+) (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work reports on the synthesis, characterization and applications of the new cerium(III) beta-diketonate Ce(hdacac)(3)(Hhdacac)(3)center dot 2H(2)O (where hdacac and Hhdacac denote, respectively, the hexadecylpentane-2,4-dionate and hexadecylpentane-2,4-dione ligands) as catalyst for the reduction of automotive emissions. Due to its amphiphilic character, this complex can be solubilized in non-polar fuels, thus generating cerium(IV) oxide particles, which efficiently catalyze the oxidation of diesel/biodiesel soot. The synthesized complex was characterized by microanalysis (C, H), thermal analysis, and infrared spectroscopy. Scanning electron microscopy, X-ray diffractometry, and specific surface area measurements attested that the complex can act as a soluble precursor of homogeneous CeO(2) spherical nanoparticles. The efficiency of this compound as catalyst for the reduction of soot emission was evaluated through static studies (comprising carbon black oxidation), which confirmed that increasing concentrations of the complex result in lower carbon black oxidation temperatures and lower activation Gibbs free energies. Dynamic studies, which embraced the combustion of diesel/biodiesel blends containing different amounts of the solubilized complex in a stationary motor, allowed a comparative evaluation of the soot emission through diffuse reflectance spectroscopy. These analyses provided very emphatic evidences of the efficiency of this new cerium complex for the control of soot emission in diesel/biodiesel motors. (c) 2009 Published by Elsevier B.V.