319 resultados para Phase-variable Genes
Resumo:
Lysozyme precipitation induced by the addition of the volatile salt ammonium carbamate was studied through cloud-point measurements and precipitation assays. Phase equilibrium experiments were carried out at 5.0, 15.0 and 25.0 degrees C and the compositions of the coexisting phases were determined. A complete separation of the coexisting liquid and solid phases could not be achieved. Nevertheless it was possible to determine the composition of the solid precipitate through the extensions of experimental tie lines. The same precipitate was found at all temperatures. Lysozyme enzymatic activities of the supernatant and precipitate phases were also determined. The activity balance suggests that ammonium carbamate preserves lysozyme activity after the salting-out precipitation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The salt-induced precipitation of lysozyme from aqueous solutions was studied through precipitation assays in which the equilibrium compositions of the coexisting phases were determined. Lysozyme precipitation experiments were carried out at 5, 15 and 25 degrees C and pH 7.0 with ammonium sulfate, sodium sulfate and sodium chloride as precipitating agents. In these experiments a complete separation of the coexisting phases (liquid and solid) could not be achieved. Nevertheless it was possible to determine the composition of the precipitate. The enzymatic activity of lysozyme in the supernatant phase as well as in the precipitate phase was also determined. The activity balance suggests that there is a relationship between the composition of the true precipitate and the total activity recovery. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Experimental results are presented for the liquid-liquid equilibrium of aqueous two-phase systems containing a synthetic polyelectrolyte (polysodium acrylate, polysodium methacrylate, and polysodium ethylene sulfonate) and polyethylene glycol at (298.2 and 323.2) K. A total of 40 phase diagrams were obtained, comprising data both of the binodal curve (obtained through cloud-point measurements) and of equilibrium compositions. The influences of temperature, the nature of the polyelectrolyte monomer unit, and the chain length of both types of polymers are analyzed and discussed.
Resumo:
The salt-induced precipitation of lysozyme from aqueous solutions was studied at 25 degrees C and various pH values by cloud-point investigations, precipitation experiments (analysing the compositions of the coexisting phases) and microscopic investigations of the precipitates. Sodium sulphate as well as ammonium sulphate were used to induce the precipitation. The experimental results are discussed and used to develop a scheme of the phase equilibrium in water-rich aqueous solutions of lysozyme and either Na2SO4 or (NH4)(2)SO4. (C) 2007 Elsevier B.V All rights reserved.
Resumo:
The atomic force microscope (AFM) introduced the surface investigation with true atomic resolution. In the frequency modulation technique (FM-AFM) both the amplitude and the frequency of oscillation of the micro-cantilever must be kept constant even in the presence of tip-surface interaction forces. For that reason, the proper design of the Phase-Locked Loop (PLL) used in FM-AFM is vital to system performance. Here, the mathematical model of the FM-AFM control system is derived considering high order PLL In addition a method to design stable third-order Phase-Locked Loops is presented. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In order to model the synchronization of brain signals, a three-node fully-connected network is presented. The nodes are considered to be voltage control oscillator neurons (VCON) allowing to conjecture about how the whole process depends on synaptic gains, free-running frequencies and delays. The VCON, represented by phase-locked loops (PLL), are fully-connected and, as a consequence, an asymptotically stable synchronous state appears. Here, an expression for the synchronous state frequency is derived and the parameter dependence of its stability is discussed. Numerical simulations are performed providing conditions for the use of the derived formulae. Model differential equations are hard to be analytically treated, but some simplifying assumptions combined with simulations provide an alternative formulation for the long-term behavior of the fully-connected VCON network. Regarding this kind of network as models for brain frequency signal processing, with each PLL representing a neuron (VCON), conditions for their synchronization are proposed, considering the different bands of brain activity signals and relating them to synaptic gains, delays and free-running frequencies. For the delta waves, the synchronous state depends strongly on the delays. However, for alpha, beta and theta waves, the free-running individual frequencies determine the synchronous state. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Phase-locked loops (PLLs) are widely used in applications related to control systems and telecommunication networks. Here we show that a single-chain master-slave network of third-order PLLs can exhibit stationary, periodic and chaotic behaviors, when the value of a single parameter is varied. Hopf, period-doubling and saddle-saddle bifurcations are found. Chaos appears in dissipative and non-dissipative conditions. Thus, chaotic behaviors with distinct dynamical features can be generated. A way of encoding binary messages using such a chaos-based communication system is suggested. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Transmission and switching in digital telecommunication networks require distribution of precise time signals among the nodes. Commercial systems usually adopt a master-slave (MS) clock distribution strategy building slave nodes with phase-locked loop (PLL) circuits. PLLs are responsible for synchronizing their local oscillations with signals from master nodes, providing reliable clocks in all nodes. The dynamics of a PLL is described by an ordinary nonlinear differential equation, with order one plus the order of its internal linear low-pass filter. Second-order loops are commonly used because their synchronous state is asymptotically stable and the lock-in range and design parameters are expressed by a linear equivalent system [Gardner FM. Phaselock techniques. New York: John Wiley & Sons: 1979]. In spite of being simple and robust, second-order PLLs frequently present double-frequency terms in PD output and it is very difficult to adapt a first-order filter in order to cut off these components [Piqueira JRC, Monteiro LHA. Considering second-harmonic terms in the operation of the phase detector for second order phase-locked loop. IEEE Trans Circuits Syst [2003;50(6):805-9; Piqueira JRC, Monteiro LHA. All-pole phase-locked loops: calculating lock-in range by using Evan`s root-locus. Int J Control 2006;79(7):822-9]. Consequently, higher-order filters are used, resulting in nonlinear loops with order greater than 2. Such systems, due to high order and nonlinear terms, depending on parameters combinations, can present some undesirable behaviors, resulting from bifurcations, as error oscillation and chaos, decreasing synchronization ranges. In this work, we consider a second-order Sallen-Key loop filter [van Valkenburg ME. Analog filter design. New York: Holt, Rinehart & Winston; 1982] implying a third order PLL The resulting lock-in range of the third-order PLL is determined by two bifurcation conditions: a saddle-node and a Hopf. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Distribution of timing signals is an essential factor for the development of digital systems for telecommunication networks, integrated circuits and manufacturing automation. Originally, this distribution was implemented by using the master-slave architecture with a precise master clock generator sending signals to phase-locked loops (PLL) working as slave oscillators. Nowadays, wireless networks with dynamical connectivity and the increase in size and operation frequency of the integrated circuits suggest that the distribution of clock signals could be more efficient if mutually connected architectures were used. Here, mutually connected PLL networks are studied and conditions for synchronous states existence are analytically derived, depending on individual node parameters and network connectivity, considering that the nodes are nonlinear oscillators with nonlinear coupling conditions. An expression for the network synchronisation frequency is obtained. The lock-in range and the transmission error bounds are analysed providing hints to the design of this kind of clock distribution system.
Resumo:
The distribution of clock signals throughout the nodes of a network is essential for several applications. in control and communication with the phase-locked loop (PLL) being the component for electronic synchronization process. In systems with master-slave (MS) strategies, the PLLs are the slave nodes responsible for providing reliable clocks in all nodes of the network. As PLLs have nonlinear phase detection, double-frequency terms appear and filtering becomes necessary. Imperfections in filtering process cause oscillations around the synchronous state worsening the performance of the clock distribution process. The behavior of one-way master-slave (OWMS) clock distribution networks is studied and performances of first- and second-order filter processes are compared, concerning lock-in ranges and responses to perturbations of the synchronous state. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
The relation between the properties of polyampholytes in aqueous solution and their adsorption behaviors on silica and cellulose surfaces was investigated. Four polyampholytes carrying different charge densities but with the same nominal ratio of positive to negative segments and two structurally similar polyelectrolytes (a polyacid and a polybase) were investigated by using quartz crystal microgravimetry using silica-coated and cellulose-coated quartz resonators. Time-resolved mass and rigidity (or viscoelasticity) of the adsorbed layer was determined from the shifts in frequency (Delta f) and energy dissipation (Delta D) of the respective resonator. Therefore, elucidation of the dynamics and extent of adsorption, as well as the conformational changes of the adsorbed macromolecules, were possible. The charge properties of the solid Surface played a crucial role in the adsorption of the studied polyampholytes, which was explained by the capability of the surface to polarize the polyampholyte at the interface. Under the same experimental conditions, the polyampholytes had a higher nominal charge density phase-separated near the interface, producing a soft, dissipative, and loosely bound layer. In the case of cellulose substrates, where adsorption was limited, electrostatic and polarization effects were concluded to be less significant.
Resumo:
Target region amplification polymorphism (TRAP) markers were used to estimate the genetic similarity (GS) among 53 sugarcane varieties and five species of the Saccharum complex. Seven fixed primers designed from candidate genes involved in sucrose metabolism and three from those involved in drought response metabolism were used in combination with three arbitrary primers. The clustering of the genotypes for sucrose metabolism and drought response were similar, but the GS based on Jaccard`s coefficient changed. The GS based on polymorphism in sucrose genes estimated in a set of 46 Brazilian varieties, all of which belong to the three Brazilian breeding programs, ranged from 0.52 to 0.9, and that based on drought data ranged from 0.44 to 0.95. The results suggest that genetic variability in the evaluated genes was lower in the sucrose metabolism genes than in the drought response metabolism ones.
Resumo:
Moniliophthora perniciosa is a hemibiotrophic fungus that causes witches` broom disease (WBD) in cacao. Marked dimorphism characterizes this fungus, showing a monokaryotic or biotrophic phase that causes disease symptoms and a later dikaryotic or saprotrophic phase. A combined strategy of DNA microarray, expressed sequence tag, and real-time reverse-transcriptase polymerase chain reaction analyses was employed to analyze differences between these two fungal stages in vitro. In all, 1,131 putative genes were hybridized with cDNA from different phases, resulting in 189 differentially expressed genes, and 4,595 reads were clusterized, producing 1,534 unigenes. The analysis of these genes, which represent approximately 21% of the total genes, indicates that the biotrophic-like phase undergoes carbon and nitrogen catabollite repression that correlates to the expression of phytopathogenicity genes. Moreover, downregulation of mitochondrial oxidative phosphorylation and the presence of a putative ngr1 of Saccharomyces cerevisiae could help explain its lower growth rate. In contrast, the saprotrophic mycelium expresses genes related to the metabolism of hexoses, ammonia, and oxidative phosphorylation, which could explain its faster growth. Antifungal toxins were upregulated and could prevent the colonization by competing fungi. This work significantly contributes to our understanding of the molecular mechanisms of WBD and, to our knowledge, is the first to analyze differential gene expression of the different phases of a hemibiotrophic fungus.
Resumo:
Several aspects of photoperception and light signal transduction have been elucidated by studies with model plants. However, the information available for economically important crops, such as Fabaceae species, is scarce. In order to incorporate the existing genomic tools into a strategy to advance soybean research, we have investigated publicly available expressed sequence tag ( EST) sequence databases in order to identify Glycine max sequences related to genes involved in light-regulated developmental control in model plants. Approximately 38,000 sequences from open-access databases were investigated, and all bona fide and putative photoreceptor gene families were found in soybean sequence databases. We have identified G. max orthologs for several families of transcriptional regulators and cytoplasmic proteins mediating photoreceptor-induced responses, although some important Arabidopsis phytochrome-signaling components are absent. Moreover, soybean and Arabidopsis gene-family homologs appear to have undergone a distinct expansion process in some cases. We propose a working model of light perception, signal transduction and response-eliciting in G. max, based on the identified key components from Arabidopsis. These results demonstrate the power of comparative genomics between model systems and crop species to elucidate several aspects of plant physiology and metabolism.
Resumo:
Causal inference methods - mainly path analysis and structural equation modeling - offer plant physiologists information about cause-and-effect relationships among plant traits. Recently, an unusual approach to causal inference through stepwise variable selection has been proposed and used in various works on plant physiology. The approach should not be considered correct from a biological point of view. Here, it is explained why stepwise variable selection should not be used for causal inference, and shown what strange conclusions can be drawn based upon the former analysis when one aims to interpret cause-and-effect relationships among plant traits.