415 resultados para Optimized using
Resumo:
Laser induced breakdown spectrometry (LIBS) was applied for the determination of macro (P, K, Ca, Mg) and micronutrients (B, Cu, Fe, Mn and Zn) in sugar cane leaves, which is one of the most economically important crops in Brazil. Operational conditions were previously optimized by a neuro-genetic approach, by using a laser Nd:YAG at 1064 nm with 110 mJ per pulse focused on a pellet surface prepared with ground plant samples. Emission intensities were measured after 2.0 mu s delay time, with 4.5 mu s integration time gate and 25 accumulated laser pulses. Measurements of LIBS spectra were based on triplicate and each replicate consisted of an average of ten spectra collected in different sites (craters) of the pellet. Quantitative determinations were carried out by using univariate calibration and chemometric methods, such as PLSR and iPLS. The calibration models were obtained by using 26 laboratory samples and the validation was carried out by using 15 test samples. For comparative purpose, these samples were also microwave-assisted digested and further analyzed by ICP OES. In general, most results obtained by LIBS did not differ significantly from ICP OES data by applying a t-test at 95% confidence level. Both LIBS multivariate and univariate calibration methods produced similar results, except for Fe where better results were achieved by the multivariate approach. Repeatability precision varied from 0.7 to 15% and 1.3 to 20% from measurements obtained by multivariate and univariate calibration, respectively. It is demonstrated that LIBS is a powerful tool for analysis of pellets of plant materials for determination of macro and micronutrients by choosing calibration and validation samples with similar matrix composition.
Resumo:
A procedure for partial digestion of bovine tissue is proposed using polytetrafluoroethylene (PTFE) microvessels inside a baby-bottle sterilizer under microwave radiation for multi-element determination by inductively coupled plasma optical emission spectrometry (ICP OES). Samples were directly weighed in laboratory-made polytetrafluoroethylene vessels. Nitric acid and hydrogen peroxide were added to the uncovered vessels, which were positioned inside the baby-bottle sterilizer, containing 500 mL of water. The hydrogen peroxide volume was fixed at 100 mu L The system was placed in a domestic microwave oven and partial digestion was carried out for the determination of Ca, Cu, Fe. Mg, Mn and Zn by inductively coupled plasma optical emission spectrometry. The single-vessel approach was used in the entire procedure, to minimize contamination in trace analysis. Better recoveries and lower residual carbon content (RCC) levels were obtained under the conditions established through a 2(4-1) fractional factorial design: 650 W microwave power, 7 min digestion time, 50 mu L nitric acid and 50 mg sample mass. The digestion efficiency was ascertained according to the residual carbon content determined by inductively coupled plasma optical emission spectrometry. The accuracy of the proposed procedure was checked against two certified reference materials. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A flow injection (FI) micelle-mediated separation/preconcentration procedure for the determination of lead and cadmium by flame atomic absorption spectrometry (FAAS) has been proposed. The analytes reacted with 1-(2-thiazolylazo)-2-naphthol (TAN) to form hydrophobic chelates, which were extracted into the micelles of 0.05% (w/v) Triton X-114 in a solution buffered at pH 8.4. In the preconcentration stage, the micellar solution was continuously injected into a flow system with four mini-columns packed with cotton, glass wool. or TNT compresses for phase separation. The analytes-containing micelles were eluted from the mini-columns by a stream of 3 mol L(-1) HCl solution and the analytes were determined by FAAS. Chemical and flow variables affecting the preconcentration of the analytes were studied. For 15 mL. of preconcentrated solution, the enhancement factors varied between 15.1 and 20.3, the limits of detection were approximately 4.5 and 0.75 mu g L(-1) for lead and cadmium, respectively. For a solution containing 100 and 10 mu g L(-1) of lead and cadmium, respectively, the R.S.D. values varied from 1.6 to 3.2% (n = 7). The accuracy of the preconcentration system was evaluated by recovery measurements on spiked water samples. The method was susceptible to matrix effects, but these interferences were minimized by adding barium ions as masking agent in the sample solutions, and recoveries from spiked sample varied in the range of 95.1-107.3%. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this work, quaternary conformational studies of peanut agglutinin (PNA) have been carried out using small-angle X-ray scattering (SAXS). PNA was submitted to three different conditions: pH variation (2.5, 4.0, 7.4 and 9.0), guanidine hydrochloride presence (0.5-2 M) at each pH value, and temperature ranging from 25 to 60 degrees C. All experiments were performed in the absence and presence of T-antigen to evaluate its influence on the lectin stability. At room temperature and pH 4.0,7.4 and 9.0, the SAXS curves are consistent with the PNA scattering in its crystallographic native homotetrameric structure, with monomers in a jelly roll fold, associated by non-covalent bonds resulting in an open structure. At pH 2.5, the results indicate that PNA tends to dissociate into smaller sub-units, as dimers and monomers, followed by a self-assembling into larger aggregates. Furthermore, the conformational stability under thermal denaturation follows the pH sequence 7.4 > 9.0 > 4.0 > 2.5. Such results are consistent with the conformational behavior found upon GndHCl influence. The presence of T-antigen does not affect the protein quaternary structure in all studied systems within the SAXS resolution. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Background: Leptin-deficient mice (Lep(ob)/Lep(ob), also known as ob/ob) are of great importance for studies of obesity, diabetes and other correlated pathologies. Thus, generation of animals carrying the Lep(ob) gene mutation as well as additional genomic modifications has been used to associate genes with metabolic diseases. However, the infertility of Lep(ob)/Lep(ob) mice impairs this kind of breeding experiment. Objective: To propose a new method for production of Lep(ob)/Lep(ob) animals and Lep(ob)/Lep(ob)-derived animal models by restoring the fertility of Lep(ob)/Lep(ob) mice in a stable way through white adipose tissue transplantations. Methods: For this purpose, 1 g of peri-gonadal adipose tissue from lean donors was used in subcutaneous transplantations of Lep(ob)/Lep(ob) animals and a crossing strategy was established to generate Lep(ob)/Lep(ob)-derived mice. Results: The presented method reduced by four times the number of animals used to generate double transgenic models (from about 20 to 5 animals per double mutant produced) and minimized the number of genotyping steps (from 3 to 1 genotyping step, reducing the number of Lep gene genotyping assays from 83 to 6). Conclusion: The application of the adipose transplantation technique drastically improves both the production of Lep(ob)/Lep(ob) animals and the generation of Lep(ob)/Lep(ob)-derived animal models. International Journal of Obesity (2009) 33, 938-944; doi: 10.1038/ijo.2009.95; published online 16 June 2009
Resumo:
The objective of this study was to propose an alternative method (MAOD(ALT)) to estimate the maximal accumulated oxygen deficit (MAOD) using only one supramaximal exhaustive test. Nine participants performed the following tests: (a) a maximal incremental exercise test, (b) six submaximal constant workload tests, and (c) a supramaximal constant workload test. Traditional MAOD was determined by calculating the difference between predicted O(2) demand and accumulated O(2) uptake during the supramaximal test. MAOD(ALT) was established by summing the fast component of excess post-exercise oxygen consumption and the O(2) equivalent for energy provided by blood lactate accumulation, both of which were measured during the supramaximal test. There was no significant difference between MAOD (2.82 +/- 0.45 L) and MAOD(ALT) (2.77 +/- 0.37 L) (p = 0.60). The correlation between MAOD and MAOD(ALT) was also high (r = 0.78; p = 0.014). These data indicate that the MAOD(ALT) can be used to estimate the MAOD.
Resumo:
The effects of different types of goal setting on motor skill learning were investigated. 100 individuals (64 men, 36 women) without experience in the performance of the Bachman ladder task participated. Participants were randomly assigned to one of five goal groups: (a) generic, (b) long-term, difficult, (c) long-term, easy; (d) short- and long-term, difficult, and (e) short- and long-term, easy. In the acquisition phase, participants performed 200 trials, and in the transfer and retention phases, each performed 50 trials. The dependent variable was the number of steps achieved in blocks of 10 trials. The results showed that the groups had similar performances in both the transfer and retention phases. Setting of generic, difficult, easy, long- and short-term, and self-setting goals all enabled similar effects on motor learning.
Resumo:
Electrodeposition of thin copper layer was carried out on titanium wires in acidic sulphate bath. The influence of titanium surface preparation, cathodic current density, copper sulphate and sulphuric acid concentrations, electrical charge density and stirring of the solution on the adhesion of the electrodeposits was studied using the Taguchi statistical method. A L(16) orthogonal array with the six factors of control at two levels each and three interactions was employed. The analysis of variance of the mean adhesion response and signal-to-noise ratio showed the great influence of cathodic current density on adhesion. on the contrary, the other factors as well as the three investigated interactions revealed low or no significant effect. From this study optimized electrolysis conditions were defined. The copper electrocoating improved the electrical conductivity of the titanium wire. This shows that copper electrocoated titanium wires could be employed for both electrical purpose and mechanical reinforcement in superconducting magnets. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The release of xylose reductase (XR) from Candida mogii by cell disruption in a glass beads mill was studied using an experimental design. Statistical analysis of the results indicated that XR volumetric activity increases by using lower glass beads diameter and cell concentration, and by increasing the number of agitation pulses. Based on results attained in experimental design, assays were carried out aiming at the maximization of XR release. Under optimized conditions (300 mu m glass beads, 45 g/l of cell concentration and 50 pulses), the XR volumetric activity reach 0.683 U/ml. Disruption with glass beads showed to be the most efficient method for XR release when compared to sonication process. The highest specific activity (0.175 U/mg of protein) was found in extracts obtained by suspension freezing and thawing, which suggests that this method can be used as a selective process of cell disruption for XR release. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Biodiesel is an important new alternative fuel. The feedstock used and the process employed determines whether it fulfills the required specifications. In this work, an identification method is proposed using an electronic nose (e-nose). Four samples of biodiesel from different sources and one of petrodiesel were analyzed and well-recognized by the e-nose. Both pure biodiesel and B20 blends were studied. Furthermore, an innovative semiquantitative method is proposed on the basis of the smellprints correlated by a feed-forward artificial neural network. The results have demonstrated that the e-nose can be used to identify the biodiesel source and as a preliminary quantitative assay in place of expensive equipment.
Resumo:
Yttria stabilized tetragonal zirconia (Y-TZP) ceramics were sintered by liquid phase sintering at low temperatures using bioglass as sintering additive. ZrO2-bioglass ceramics were prepared by mixing a ZrO2 stabilized with 3 Mol%Y2O3 and different amounts of bioglass based on 3CaO center dot P2O5-MgO-SiO2 system. Mixtures were compacted by uniaxial cold pressing and sintered in air, at 1200 and 1300 degrees C for 120 min. The influence of the bioglass content on the densification, tetragonal phase stability, bending strength, hardness and fracture toughness was investigated. The ceramics sintered at 1300 degrees C and prepared by addition of 3% of bioglass, exhibited the highest strength of 435 MPa, hardness of 1170 HV and fracture toughness of 6.3 MPa m(1/2). These results are related to the low monoclinic phase content, high relative density and the presence of the thermal residual stress generated between the ZrO2-matrix and bioglass grain boundary, contributing to the activation of the toughening mechanisms. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Spent sulfite pulping liquor (SSL) contains lignin, which is present as lignosulfonate, and hemicelluloses that are present as hydrolyzed carbohydrates. To reduce the biological oxygen demand of SSL associated with dissolved sugars, we studied the capacity of Pichia stipitis FPL-YS30 (xyl3 Delta) to convert these sugars into useful products. FPL-YS30 produces a negligible amount of ethanol while converting xylose into xylitol. This work describes the xylose fermentation kinetics of yeast strain P.stipitis FPL-YS30. Yeast was grown in rich medium supplemented with different carbon sources: glucose, xylose, or ammonia-base SSL. The SSL and glucose-acclimatized cells showed similar maximum specific growth rates (0.146 h(-1)). The highest xylose consumption at the beginning of the fermentation process occurred using cells precultivated in xylose, which showed relatively high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49). However, the maximum specific rates of xylose consumption (0.19 g(xylose)/g(cel) h) and xylitol production (0.059 g(xylitol)/g(cel) h) were obtained with cells acclimatized in glucose, in which the ratio between xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) was kept at higher level (0.82). In this case, xylitol production (31.6 g/l) was 19 and 8% higher than in SSL and xylose-acclimatized cells, respectively. Maximum glycerol (6.26 g/l) and arabitol (0.206 g/l) production were obtained using SSL and xylose-acclimatized cells, respectively. The medium composition used for the yeast precultivation directly reflected their xylose fermentation performance. The SSL could be used as a carbon source for cell production. However, the inoculum condition to obtain a high cell concentration in SSL needs to be optimized.
Resumo:
The conditions for maximization of the enzymatic activity of lipase entrapped in sol-gel matrix were determined for different vegetable oils using an experimental design. The effects of pH, temperature, and biocatalyst loading on lipase activity were verified using a central composite experimental design leading to a set of 13 assays and the surface response analysis. For canola oil and entrapped lipase, statistical analyses showed significant effects for pH and temperature and also the interactions between pH and temperature and temperature and biocatalyst loading. For the olive oil and entrapped lipase, it was verified that the pH was the only variable statistically significant. This study demonstrated that response surface analysis is a methodology appropriate for the maximization of the percentage of hydrolysis, as a function of pH, temperature, and lipase loading.
Resumo:
A modular superconducting fault current limiter (SFCL) consisting of 16 elements was constructed and tested in a 220 V line for a fault current between 1 kA to 7.4 kA. The elements are made up of second generation (2G) YBCO-coated conductor tapes with stainless steel reinforcement. For each element four tapes were electrically connected in parallel with effective length of 0.4 m per element, totaling 16 elements connected in series. The evaluation of SFCL performance was carried out under DC and AC tests. The DC test was performed through pulsed current tests and its recovery characteristics under load current were analysed by changing the shunt resistor value. The AC test performed using a 3 MVA/220 V/60 Hz transformer has shown the current limiting ratio achieved a factor higher than 10 during fault of up to five cycles without conductor degradation. The measurement of the voltage for each element during the AC test showed that in this modular SFCL the quench is homogeneous and the transition occurs similarly in all the elements.
Resumo:
Molybdenum and tungsten bimetallic oxides were synthetized according to the following methods: Pechini, coprecipitation and solid state reaction (SSR). After the characterization, those solids were carbureted at programmed temperature. The carburation process was monitored by checking the consumption of carburant hydrocarbon and CO produced. The monitoring process permits to avoid or to diminish the formation of pirolytic carbon.