161 resultados para NECROSIS-FACTOR-ALPHA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apocynin, a methoxy-substituted catechol (4-hydroxy-3-methoxyacetophenone), originally extracted from the roots of Picrorhiza kurroa, has been extensively used as a non-toxic inhibitor of the multienzymatic complex NADPH oxidase. We discovered that the analogous methoxy-substituted catechol, 4-Fluoro-2-methoxyphenol (F-apocynin), in which the acetyl group present in apocynin was changed to a fluorine atom, was significantly more potent as an inhibitor of NADPH oxidase activity, myeloperoxidase (MPO) chlorinating activity and phagocytosis of microorganisms by neutrophils; it was also as potent as apocynin in inhibiting tumor necrosis factor-alpha (TNF alpha) release by peripheral blood mononuclear cells. We attribute the increased potency of F-apocynin to its increased lipophilicity, which could facilitate the passage of the drug through the cell membrane. The inhibition of MPO chlorination activity, phagocytosis and TNF alpha release shows that apocynin and F-apocynin actions are not restricted to reactive oxygen species inhibition, but further studies are needed to clarify if these mechanisms are related. Like apocynin, F-apocynin did not show cell toxicity, and is a strong candidate for use in the treatment of inflammatory diseases. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

immunodeficiency (CVID), the most common symptomatic primary immunodeficiency in adulthood. Different authors report high prevalences of autoimmune diseases in CVID, and several mechanisms have been proposed to explain this apparent paradox. Genetic predisposition, under current surveillance, innate and adaptive immunity deficiencies leading to persistent/recurrent infections, variable degrees of immune dysregulation, and possible failure in central and peripheral mechanisms of tolerance induction or maintenance may all contribute to increased autoimmunity. Conclusions Data on the clinical/immunological profile of affected patients and treatment are available mostly concerning autoimmune cytopenias, the most common autoimmune diseases in CVID. Treatment is based on conventional alternatives, in association with short experience with new agents, including rituximab and infliximab. Benefits of early immunoglobulin substitutive treatment and hypothetical premature predictors of autoimmunity are discussed as potential improvements to CVID patients` follow-up.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims Periodontal disease (PD) and airway allergic inflammation (AL) present opposing inflammatory immunological features and clinically present an inverse correlation. However, the putative mechanisms underlying such opposite association are unknown. Material and Methods Balb/C mice were submitted to the co-induction of experimental PD (induced by Actinobacillus actinomycetemcomitans oral inoculation) and AL [induced by sensitization with ovalbumin (OVA) and the subsequent OVA challenges], and evaluated regarding PD and AL severity, immune response [cytokine production at periodontal tissues, and T-helper transcription factors in submandibular lymph nodes (LNs)] and infection parameters. Results PD/AL co-induction decreased PD alveolar bone loss and periodontal inflammation while experimental AL parameters were unaltered. An active functional interference was verified, because independent OVA sensitization and challenge not modulate PD outcome. PD+AL group presented decreased tumour necrosis factor-alpha (TNF-alpha), interleukin (IL)-1 beta, -gamma, IL-17A, receptor activator of nuclear factor kappa-light-chain-enhancer of activated B cells ligand and matrix metalloproteinase (MMP)-13 levels in periodontal tissues, while IL-4 and IL-10 levels were unaltered by AL co-induction. AL co-induction also resulted in upregulated T-bet and related orphan receptor gamma and downregulated GATA3 levels expression in submandibular LNs when compared with PD group. Conclusion Our results demonstrate that the interaction between experimental periodontitis and allergy involves functional immunological interferences, which restrains experimental periodontitis development by means of a skewed immune response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Periapical lesions are chronic inflammatory disorders of periradicular tissues caused by etiologic agents of endodontic origin. The inflammatory chemokines are thought to be involved in the latter observed osteolysis. With a murine model of experimental periapical lesion, the objective of this study was to evaluate the role of the chemokine receptor CCR2 in the lesion progression, osteoclast differentiation and activation, and expression of inflammatory osteolysis-related mediators. Methods: For lesion induction, right mandibular first molars were opened surgically with a (1)/(4) carbine bur, and 4 bacterial strains were inoculated in the exposed dental pulp; left mandibular first molars were used as controls. Animals were killed at 3, 7, 14, and 21 days after surgeries to evaluate the kinetics of lesion development. Results: CCR2 KO mice showed wider lesions than WT mice. CCR2 KO mice also expressed higher levels of the osteoclastogenic and osteolytic factors, receptor activator of nuclear factor kappa B ligand (RANKL) and cathepsin K, of the proinflammatory cytokine tumor necrosis factor alpha, and of the neutrophil migration related chemokine, KC. Conclusions: These results suggest that CCR2 is important in host protection to periapical osteolysis. (J Endod 2010;36:244-250)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clearing blood-stage malaria parasites without inducing major host pathology requires a finely tuned balance between pro- and anti-inflammatory responses. The interplay between regulatory T (Treg) cells and dendritic cells (DCs) is one of the key determinants of this balance. Although experimental models have revealed various patterns of Treg cell expansion, DC maturation, and cytokine production according to the infecting malaria parasite species, no studies have compared all of these parameters in human infections with Plasmodium falciparum and P. vivax in the same setting of endemicity. Here we show that during uncomplicated acute malaria, both species induced a significant expansion of CD4(+) CD25(+) Foxp3(+) Treg cells expressing the key immunomodulatory molecule CTLA-4 and a significant increase in the proportion of DCs that were plasmacytoid (CD123(+)), with a decrease in the myeloid/plasmacytoid DC ratio. These changes were proportional to parasite loads but correlated neither with the intensity of clinical symptoms nor with circulating cytokine levels. One-third of P. vivax-infected patients, but no P. falciparum-infected subjects, showed impaired maturation of circulating DCs, with low surface expression of CD86. Although vivax malaria patients overall had a less inflammatory cytokine response, with a higher interleukin-10 (IL-10)/tumor necrosis factor alpha (TNF-alpha) ratio, this finding did not translate to milder clinical manifestations than those of falciparum malaria patients. We discuss the potential implications of these findings for species-specific pathogenesis and longlasting protective immunity to malaria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Giachini FR, Zemse SM, Carneiro FS, Lima VV, Carneiro ZN, Callera GE, Ergul A, Webb RC, Tostes RC. Interleukin-10 attenuates vascular responses to endothelin-1 via effects on ERK1/2-dependent pathway. Am J Physiol Heart Circ Physiol 296: H489-H496, 2009. First published December 12, 2008; doi:10.1152/ajpheart.00251.2008.-Interleukin-10 (IL-10) is an anti-inflammatory cytokine with protective actions on the vasculature. On the other hand, endothelin ( ET)-1 has potent vasoconstrictor, mitogenic, and proinflammatory activities, which have been implicated in the pathophysiology of a number of cardiovascular diseases. We hypothesized that, in a condition where ET-1 expression is upregulated, i.e., on infusion of TNF-alpha, IL-10 confers vascular protection from ET-1-induced injury. Aortic rings and first-order mesenteric arteries from male C57BL/6 (WT) and IL-10-knockout (IL-10(-/-)) mice were treated with human recombinant TNF-alpha (220 ng.kg(-1).day(-1)) or vehicle (saline) for 14 days. TNF-alpha infusion significantly increased blood pressure in IL-10(-/-), but not WT, mice. TNF-alpha augmented vascular ET-1 mRNA expression in arteries from WT and IL-10(-/-) mice. ET type A (ETA) receptor expression was increased in arteries from IL-10(-/-) mice, and TNF-alpha infusion did not change vascular ETA receptor expression in control or IL-10(-/-) mice. Aorta and mesenteric arteries from TNF-alpha-infused IL-10(-/-) mice displayed increased contractile responses to ET-1, but not the ET type B receptor agonist IRL-1620. The ETA receptor antagonist atrasentan completely abolished responses to ET-1 in aorta and mesenteric vessels, whereas the ERK1/2 inhibitor PD-98059 abrogated increased contractions to ET-1 in arteries from TNF-alpha-infused IL-10(-/-) mice. Infusion of TNF-alpha, as well as knockdown of IL-10 (IL-10(-/-)), induced an increase in total and phosphorylated ERK1/2. These data demonstrate that IL-10 counteracts ET(A)-mediated vascular responses to ET-1, as well as activation of the ERK1/2 pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All-trans-retinoic acid (atRA) appears to affect Th1-Th2 differentiation and its effects on immune responses might also be mediated by dendritic cell (DC). Nonetheless, studies have been showing contradictory results since was observed either induction or inhibition of DC differentiation. Our aim was to investigate atRA action on human monocyte derived DC differentiation. For this purpose we tested pharmacological and physiological doses of atRA with or without cytokines. Cell phenotypes were analyzed by flow cytometry and function was investigated by phagocytosis and respiratory burst. DC, positive control group, was differentiated with GM-CSF and IL-4 and maturated with TNF-alpha. We demonstrated that atRA effects depend on the dose used as pharmacological doses inhibited expression of all phenotypic markers tested while a physiological dose caused cell differentiation. However, atRA combined or not with cytokines did not promote DC differentiation. In fact, atRA was detrimental on IL-4 property as a DC inductor. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipopolysaccharides from gram-negative bacteria are amongst the most common causative agents of acute lung injury, which is characterized by an inflammatory response, with cellular infiltration and the release of mediators/cytokines. There is evidence that bradykinin plays a role in lung inflammation in asthma but in other types of lung inflammation its role is less clear. In the present study we evaluated the role of the bradykinin B(1) receptor in acute lung injury caused by lipopolysaccharide inhalation and the mechanisms behind bradykinin actions participating in the inflammatory response. We found that in C57BI/6 mice, the bradykinin B(1) receptor expression was up-regulated 24 h after lipopolysaccharide inhalation. At this time, the number of cells and protein concentration were significantly increased in the bronchoalveolar lavage fluid and the mice developed airway hyperreactivity to methacholine. In addition, there was an increased expression of tumor necrosis factor-alpha, interleukin-1 beta and interferon-gamma and chemokines (monocytes chemotactic protein-1 and KC) in the bronchoalveolar lavage fluid and in the lung tissue. We then treated the mice with a bradykinin B, receptor antagonist, R-954 (Ac-Orn-[Oic(2), alpha-MePhe(5), D-beta Nal(7), Ile(8)]desArg(9)-bradykinin), 30 min after lipopolysaccharide administration. We observed that this treatment prevented the airway hyperreactivity as well as the increased cellular infiltration and protein content in the bronchoalveolar lavage fluid. Moreover, R-954 inhibited the expression of cytokines/chemokines. These results implicate bradykinin, acting through B(1) receptor, in the development of acute lung injury caused by lipopolysaccharide inhalation. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Considering that inflammation contributes to obesity-induced insulin resistance and that statins have been reported to have other effects beyond cholesterol lowering, the present study aimed to it whether atorvastatin treatment has anti-inflammatory action in white adipose tissue of obese mice, consequently improving insulin sensitivity. Insulin sensitivity in vivo (by insulin tolerance test); metabolic-hormonal profile; plasma tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, and adiponectin; adipose tissue immunohistochemistry; glucose transporter (GLUT) 4; adiponectin; INF-alpha; IL-1 beta; and IL-6 gene expression; and I kappa B kinase (IKK)-alpha/beta activity were assessed in 23-week-old monosodium glutamate induced obese mice untreated or treated with atorvastatin for 4 weeks. Insulin-resistant obese mice had increased plasma triglyceride, insulin, TNF-alpha, and IL-6 plasma levels. Adipose tissue of obese animals showed increased macrophage infiltration, IKK-alpha (42%, P < .05) and IKK-beta (73%, P < .05) phosphorylation, and INF-alpha and IL-6 messenger RNA (mRNA) (similar to 15%, P < .05) levels, and decreased GLUT4 mRNA and protein (30%, P < .05) levels. Atorvastatin treatment lowered cholesterol, triglyceride, insulin, INF-alpha, and IL-6 plasma levels, and restored whole-body insulin sensitivity. In adipose tissue, atorvastatin decreased macrophage in and normalized IKK-alpha/beta phosphorylation; INF-alpha, IL-6, and GLUT4 mRNA; and GLUT4 protein to control levels. The present findings demonstrate that atorvastatin has anti-inflammatory effects on adipose tissue of obese mice, which may be important to its local and whole-body insulin-sensitization effects. (C) 2010 Published by Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serum amyloid A (SAA) levels are elevated highly in acute phase response and elevated slightly and persistently in chronic diseases such as rheumatoid arthritis and diabetes. Given that fibroblasts exert profound effects on progression of inflammatory chronic diseases, the aim of this study was to investigate the response of fibroblasts to SAA. A dose-dependent increase in O(2)(-) levels was observed by treatment of fibroblasts with SAA (r = 0.99 and P <= 0.001). In addition, the expression of p47-phox was up-regulated by SAA (P < 0.001) and diphenyliodonium (DPI), a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, reduced the release of O(2)(-) by 50%. Also, SAA raised fibroblast proliferation (P < 0.001) and this effect was completely abolished by the addition of anti-oxidants (P < 0.001). These findings support the notion that, in chronic inflammatory sites, SAA activated fibroblast proliferation and ROS production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a progressive inflammatory and/or demyelinating disease of the human central nervous system (CNS). Most of the knowledge about the pathogenesis of MS has been derived from murine models, such as experimental autoimmune encephalomyelitis and vital encephalomyelitis. Here, we infected female C57BL/6 mice with a neurotropic strain of the mouse hepatitis virus (MHV-59A) to evaluate whether treatment with the multifunctional antioxidant tempol (4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxy) affects the ensuing encephalomyelitis. In untreated animals, neurological symptoms developed quickly: 90% of infected mice died 10 days after virus inoculation and the few survivors presented neurological deficits. Treatment with tempol (24 mg/kg, ip, two doses on the first day and daily doses for 7 days plus 2 mM tempol in the drinking water ad libitum) profoundly altered the disease outcome: neurological symptoms were attenuated, mouse survival increased up to 70%, and half of the survivors behaved as normal mice. Not Surprisingly, tempol substantially preserved the integrity of the CNS, including the blood-brain barrier. Furthermore, treatment with tempol decreased CNS vital titers, macrophage and T lymphocyte infiltration, and levels of markers of inflammation, such as expression of inducible nitric oxide synthase, transcription of tumor necrosis factor-alpha and interferon-gamma, and protein nitration. The results indicate that tempol ameliorates murine viral encephalomyelitis by altering the redox status of the infectious environment that contributes to an attenuated CNS inflammatory response. overall, our study supports the development of therapeutic strategies based on nitroxides to manage neuroinflammatory diseases, including MS. (C) 2009 Elsevier Inc. All rights reserved.