157 resultados para Metal oxide semiconductor field-effect transistors
Resumo:
Background: Recent studies have suggested that impaired nitric oxide (NO) formation in preeclampsia may result from increased concentrations of an endogenous NO synthase inhibitor, the asymmetric dimethylarginine (ADMA). However, no previous study has examined whether a negative association exists between ADMA and nitrite concentrations in preeclampsia. Moreover, no previous study has compared ADMA and nitrite levels in black and white preeclamptic pregnant women. Methods: We measured plasma nitrite concentrations using an ozone-based chemiluminescence assay, and plasma ADMA levels using enzyme immunoassays in 94 pregnant (47 healthy pregnant: 16 blacks and 31 whites; and 47 preeclamptic: 14 blacks and 33 whites). Results: We found higher ADMA (2.199 +/- 0.016 mu mol/l vs. 2.112 +/- 0.012 mu mol/l; P < 0.0001) and lower plasma nitrite levels (102 +/- 7.1 nmol/l vs. 214.8 +/- 26.1 nmol/l; P<0.0001) in preeclamptic compared with healthy pregnant women. Black pregnant had higher ADMA levels than white pregnant women (P<0.05), both in preeclamptic (2.239 +/- 0.020 mu mol/l vs. 2.144 +/- 0.019 mu mol/l) and in healthy pregnant (2.172 +/- 0.025 mu mol/l vs. 2.077 +/- 0.018 mu mol/l). Conversely, we found no significant effects of ethnicity on the plasma nitrite levels, both in healthy pregnant and in preeclamptic women (P>0.05). We found a significant negative correlation (P<0.05) between these markers (r = 0.28; P<0.05). Conclusions: Our findings show higher ADMA and lower nitrite levels in preeclamptic compared with healthy pregnant, and the concentrations of these biomarkers are inversely associated. While ethnicity affected ADMA concentrations, no such effect was found with respect to nitrite levels. These results may have important implications for studies on NO biology and therapeutic approaches of preeclampsia. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Functional brain imaging techniques such as functional MRI (fMRI) that allow the in vivo investigation of the human brain have been exponentially employed to address the neurophysiological substrates of emotional processing. Despite the growing number of fMRI studies in the field, when taken separately these individual imaging studies demonstrate contrasting findings and variable pictures, and are unable to definitively characterize the neural networks underlying each specific emotional condition. Different imaging packages, as well as the statistical approaches for image processing and analysis, probably have a detrimental role by increasing the heterogeneity of findings. In particular, it is unclear to what extent the observed neurofunctional response of the brain cortex during emotional processing depends on the fMRI package used in the analysis. In this pilot study, we performed a double analysis of an fMRI dataset using emotional faces. The Statistical Parametric Mapping (SPM) version 2.6 (Wellcome Department of Cognitive Neurology, London, UK) and the XBAM 3.4 (Brain Imaging Analysis Unit, Institute of Psychiatry, Kings College London, UK) programs, which use parametric and non-parametric analysis, respectively, were used to assess our results. Both packages revealed that processing of emotional faces was associated with an increased activation in the brain`s visual areas (occipital, fusiform and lingual gyri), in the cerebellum, in the parietal cortex, in the cingulate cortex (anterior and posterior cingulate), and in the dorsolateral and ventrolateral prefrontal cortex. However, blood oxygenation level-dependent (BOLD) response in the temporal regions, insula and putamen was evident in the XBAM analysis but not in the SPM analysis. Overall, SPM and XBAM analyses revealed comparable whole-group brain responses. Further Studies are needed to explore the between-group compatibility of the different imaging packages in other cognitive and emotional processing domains. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Background: Angiogenesis has been shown as an important process in hematological malignancies. It consists in endothelial proliferation, migration, and tube formation following pro-angiogenic factors releasing, specially the vascular endothelial growth factor (VEGF), which angiogenic effect seems to be dependent on nitric oxide (NO). We examined the association among functional polymorphism in these two angiogenesis related genes: VEGF (-2578C>A, -1154G>A, and -634G>C) and NOS3 (-786T>C, intron 4 b>a, and Glu298Asp) with prognosis of childhood acute lymphoblastic leukemia (ALL). Methods: The genotypes were determined and haplotypes estimated in 105 ALL patients that were divided in 2 groups: high risk (HR) and low risk of relapse (LR) patients. In addition, event-free survival curves according to genotypes were assessed. Results: The group HR compared to the LR showed a higher frequency of the alleles -2578C and -634C and the haplotype CGC for VEGF (0.72 vs. 0.51, p<0.008; 0.47 vs. 0.26, p<0.008; and 42.1 vs. 14.5, p<0.006; respectively) and a lower frequency of the haplotype CbGlu (0.4 vs. 8.8, p<0.006), for NOS3. Conclusion: Polymorphisms of VEGF and NOS3 genes are associated with high risk of relapse, therefore may have a prognostic impact in childhood ALL. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVES To investigate the effects of chronic ethanol consumption on nitric oxide (NO)-mediated relaxation in rat cavernosal smooth muscle (CSM). METHODS Male wistar rats were divided into 2 groups: control and ethanol. CSM obtained from both groups were mounted in organ chambers for measurement of isometric tension. Contraction of the strips was induced by electrical field stimulation (EFS, 1-32 Hertz) and phenylephrine. We also evaluated the effect of ethanol consumption on the relaxation induced by acetylcholine (0.01-1000 mu mol L(-1)), sodium nitroprusside (SNP, 0.01-1000 mu mol L(-1)), or EFS (1-32 Hz) in strips precontracted with phenylephrine (10 mu mol L(-1)). Blood ethanol, serum testosterone levels, and basal nitrate generation were determined. Immunoexpression of endothelial NO synthase (eNOS) and inducible NO synthase (iNOS) was also accessed. RESULTS Ethanol intake for 4 weeks significantly increased noradrenergic nerve-mediated contractions of CSM in response to EFS. The endothelium-dependent relaxation induced by acetylcholine decreased after the ethanol treatment. Ethanol consumption decreased serum testosterone levels but did not affect the nitrate levels on rat CSM. The mRNA and protein levels for eNOS and iNOS receptors were increased in CSM from ethanol-treated rats. CONCLUSIONS Ethanol consumption reduces endothelium-dependent relaxation induced by acetylcholine, but does not affect SNP or EFS-induced relaxation, suggesting that ethanol disrupts the endothelial function. Despite the overexpression of eNOS and iNOS in ethanol-treated rats, the impaired relaxation induced by acetylcholine may suggest that chronic ethanol consumption induces endothelial dysfunction. UROLOGY 74: 1250-1256, 2009. (C) 2009 Published by Elsevier Inc.
Resumo:
Objective: The present study has investigated the effect of blockade of nitric oxide synthesis on cardiovascular autonomic adaptations induced by aerobic physical training using different approaches: 1) double blockade with methylatropine and propranolol; 2) systolic arterial pressure (SAP) and heart rate variability (HRV) by means of spectral analysis; and 3) baroreflex sensitivity. Methods: Male Wistar rats were divided into four groups: sedentary rats (SR); sedentary rats treated with N(omega)-nitro-L-arginine methyl ester (L-NAME) for one week (SRL); rats trained for eight weeks (TR); and rats trained for eight weeks and treated with L-NAME in the last week (TRL). Results: Hypertension and tachycardia were observed in SRL group. Previous physical training attenuated the hypertension in L-NAME-treated rats. Bradycardia was seen in TR and TRL groups, although such a condition was more prominent in the latter. All trained rats had lower intrinsic heart rates. Pharmacological evaluation of cardiac autonomic tonus showed sympathetic predominance in SRL group, differently than other groups. Spectral analysis of HRV showed smaller low frequency oscillations (LF: 0.2-0.75 Hz) in SRL group compared to other groups. Rats treated with L-NAME presented greater LF oscillations in the SAP compared to non-treated rats, but oscillations were found to be smaller in TRL group. Nitric oxide synthesis inhibition with L-NAME reduced the baroreflex sensitivity in sedentary and trained animals. Conclusion: Our results showed that nitric oxide synthesis blockade impaired the cardiovascular autonomic adaptations induced by previous aerobic physical training in rats that might be, at least in part, ascribed to a decreased baroreflex sensitivity. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We have investigated the ovariectomy effects on the cardiovascular autonomic adaptations induced by aerobic physical training and the role played by nitric oxide (NO). Female Wistar rats (n =70) were divided into five groups: Sedentary Sham (SS): Trained Sham (TS); Trained Hypertensive Sham treated with N(C)-nitro-L-arginine methyl ester (L-NAME) (THS): Trained Ovariectomized (TO); and Trained Hypertensive Ovariectomized treated with L-NAME (THO). Trained groups were submitted to a physical training during 10 weeks. The cardiovascular autonomic control was investigated in all groups using different approaches: 1) pharmacological evaluation of autonomic tonus with methylatropine and propranolol; 2) analysis of heart rate (HR) and systolic arterial pressure (AP) variability; 3) spontaneous baroreflex sensitivity (BRS) evaluation. Hypertension was observed in THS and THO groups. Pharmacological analysis showed that TS group had increased predominance of autonomic vagal tonus compared to SS group. HR and intrinsic HR were found to be reduced in all trained animals. TS group, compared to other groups, showed a reduction in LF oscillations (LF=0.2-0.75 Hz) of pulse interval in both absolute and normalized units as well as an increase in HF oscillations (HF=0.75-2.50 Hz) in normalized unit. FIRS analysis showed that alpha-index was different between all groups. TS group presented the greatest value, followed by the TO, SS. THO and THS groups. Ovariectomy has negative effects on cardiac autonomic modulation in trained rats, which is characterized by an increase in the sympathetic autonomic modulation. These negative effects suggest NO deficiency. In contrast, the ovariectomy seems to have no effect on AP variability. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVE To investigate the effects of chronic ethanol consumption and diabetes on nitric oxide (NO)-mediated relaxation of cavernosal smooth muscle (CSM). MATERIAL AND METHODS Male Wistar rats were divided into four groups: control, isocaloric, diabetic and ethanol-diabetic. The CSMs were mounted in organ chambers for measurement of isometric tension. Contraction of the strips was induced by electrical field stimulation (EFS, 1-32 Hz) and phenylephrine. We also evaluated the effect of ethanol consumption on the relaxation induced by acetylcholine (ACh; 0.01-1000 mu mol/L), sodium nitroprusside (SNP, 0.01-1000 mu mol/L) or EFS (1-32 Hz) in strips pre-contracted with phenylephrine (10 mu mol/L). Immunoexpression of endothelial NO synthase (eNOS) and inducible NOS (iNOS) was also accessed. RESULTS The endothelium-dependent relaxation induced by ACh was decreased in CSM from ethanol-diabetic rats when compared with the controls, with a mean (sem) of 21 (4) vs 37 (2)%. Similarly, the potency and maximal responses induced by SNP were reduced in the ethanol-diabetic [3.97 (0.38) and 85 (1)%, respectively] and diabetic groups [3.78 (0.56) and 81 (2)%, respectively] when compared with the controls [5.3 (0.22) and 90 (3)%, respectively] and isocaloric [5.3 (0.19) and 92 (1)%, respectively] groups. Noradrenergic nerve-mediated contractions of CSM in response to EFS were increased in rats from ethanol-diabetic and diabetic groups when compared with the control and isocaloric groups. Conversely, there were no differences in EFS-induced relaxation among the groups. The immunostaining assays showed overexpression of eNOS and iNOS in the CSM from diabetic and ethanol-diabetic rats when compared with the control and isocaloric rats. CONCLUSION There was an impairment of relaxation of CSM from ethanol-diabetic and diabetic rats that involved a decrease in the NO-cyclic guanosine monophosphate signalling pathway by endothelium-dependent mechanisms accompanied by a change in the CSM contractile sensitivity.