157 resultados para Finite Temperature
Resumo:
Objectives: To evaluate the effect of adhesive temperature on the resin-dentin bond strength (mu TBS), nanoleakage (NL), adhesive layer thickness (AL), and degree of conversion (DC) of ethanol/water- (SB) and acetone-based (PB) etch-and-rinse adhesive systems. Methods: The bottles of the two adhesives were kept at each temperature (5 degrees C, 20 degrees C, 37 degrees C, and 50 degrees C) for 2 hours before application to demineralized dentin surfaces of 40 molars. Specimens were prepared for mu TBS testing. Bonded sticks (0.8 mm(2)) were tested under tension (0.5 mm/min). Three bonded sticks from each tooth were immersed in silver nitrate and analyzed by scanning electron microscopy. The DC of the adhesives was evaluated by Fourier transformed infrared spectroscopy. Results: Lower mu TBS was observed for PB at 50 degrees C. For SB, the mu TBS values were similar for all temperatures. DC was higher at 50 degrees C for PB. Higher NL and thicker AL were observed for both adhesives in the 5 degrees C and 20 degrees C groups compared to the 37 degrees C and 50 degrees C groups. The higher temperatures (37 degrees C or 50 degrees C) reduced the number of pores within the adhesive layer of both adhesive systems. Conclusions: It could be useful to use an ethanol/water-based adhesive at 37 degrees C or 50 degrees C and an acetone-based adhesive at 37 degrees C to improve adhesive performance.
Resumo:
The temperature of different refrigerant sprays (Endo-Ice, Endo-Frost, Coolermatic and Sprayon Contact and Tuner Cleaner) used as pulpal tests were evaluated in vitro. A thermocouple placed inside the pulp chamber of a maxillary central incisor was used to register the temperature changes when the refrigerant sprays were applied with a cotton swab, for 10 s. Results indicate that Endo-Ice and Endo-Frost presented the lowest temperatures among the refrigerant sprays tested. Temperatures measured inside the pulp chamber, however, were statistically similar in all groups.
Resumo:
Background: Understanding how clinical variables affect stress distribution facilitates optimal prosthesis design and fabrication and may lead to a decrease in mechanical failures as well as improve implant longevity. Purpose: In this study, the many clinical variations present in implant-supported prosthesis were analyzed by 3-D finite element method. Materials and Method: A geometrical model representing the anterior segment of a human mandible treated with 5 implants supporting a framework was created to perform the tests. The variables introduced in the computer model were cantilever length, elastic modulus of cancellous bone, abutment length, implant length, and framework alloy (AgPd or CoCr). The computer was programmed with physical properties of the materials as derived from the literature, and a 100N vertical load was used to simulate the occlusal force. Images with the fringes of stress were obtained and the maximum stress at each site was plotted in graphs for comparison. Results: Stresses clustered at the elements closest to the loading point. Stress increase was found to be proportional to the increase in cantilever length and inversely proportional to the increase in the elastic modulus of cancellous bone. Increasing the abutment length resulted in a decrease of stress on implants and framework. Stress decrease could not be demonstrated with implants longer than 13 mm. A stiffer framework may allow better stress distribution. Conclusion: The relative physical properties of the many materials involved in an implant-supported prosthesis system affect the way stresses are distributed.
Resumo:
Purpose: The objective of this study was to evaluate the stress on the cortical bone around single body dental implants supporting mandibular complete fixed denture with rigid (Neopronto System-Neodent) or semirigid splinting system (Barra Distal System-Neodent). Methods and Materials: Stress levels on several system components were analyzed through finite element analysis. Focusing on stress concentration at cortical bone around single body dental implants supporting mandibular complete fixed dentures with rigid ( Neopronto System-Neodent) or semirigid splinting system ( Barra Distal System-Neodent), after axial and oblique occlusal loading simulation, applied in the last cantilever element. Results: The results showed that semirigid implant splinting generated lower von Mises stress in the cortical bone under axial loading. Rigid implant splinting generated higher von Mises stress in the cortical bone under oblique loading. Conclusion: It was concluded that the use of a semirigid system for rehabilitation of edentulous mandibles by means of immediate implant-supported fixed complete denture is recommended, because it reduces stress concentration in the cortical bone. As a consequence, bone level is better preserved, and implant survival is improved. Nevertheless, for both situations the cortical bone integrity was protected, because the maximum stress level findings were lower than those pointed in the literature as being harmful. The maximum stress limit for cortical bone (167 MPa) represents the threshold between plastic and elastic state for a given material. Because any force is applied to an object, and there is no deformation, we can conclude that the elastic threshold was not surpassed, keeping its structural integrity. If the force is higher than the plastic threshold, the object will suffer permanent deformation. In cortical bone, this represents the beginning of bone resorption and/or remodeling processes, which, according to our simulated loading, would not occur. ( Implant Dent 2010; 19:39-49)
Resumo:
Objectives. The purpose of this study was to investigate the effect of light-curing protocol on degree of conversion (DC), volume contraction (C), elastic modulus (E), and glass transition temperature (T(g)) as measured on a model polymer. It was a further aim to correlate the measured values with each other. Methods. Different light-curing protocols were used in order to investigate the influence of energy density (ED), power density (PD), and mode of cure on the properties. The modes of cure were continuous, pulse-delay, and stepped irradiation. DC was measured by Raman micro-spectroscopy. C was determined by pycnometry and a density column. E was measured by a dynamic mechanical analyzer (DMA), and T(g) was measured by differential scanning calorimetry (DSC). Data were submitted to two-and three-way ANOVA, and linear regression analyses. Results. ED, PD, and mode of cure influenced DC, C, E, and T(g) of the polymer. A significant positive correlation was found between ED and DC (r = 0.58), ED and E (r = 0.51), and ED and T(g) (r = 0.44). Taken together, ED and PD were significantly related to DC and E. The regression coefficient was positive for ED and negative for PD. Significant positive correlations were detected between DC and C (r = 0.54), DC and E (r = 0.61), and DC and T(g) (r = 0.53). Comparisons between continuous and pulse-delay modes of cure showed significant influence of mode of cure: pulse-delay curing resulted in decreased DC, decreased C, and decreased T(g). Influence of mode of cure, when comparing continuous and step modes of cure, was more ambiguous. A complex relationship exists between curing protocol, microstructure of the resin and the investigated properties. The overall performance of a composite is thus indirectly affected by the curing protocol adopted, and the desired reduction of C may be in fact a consequence of the decrease in DC. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Evidence indicates that endogenous opioids play a role in body temperature (Tb) regulation in mammals but no data exist about the involvement of the specific opioid receptors, mu, kappa and delta, in the reduction of Tb induced by hypoxia. Thus, we investigated the participation of these opioid receptors in the anteroventral preoptic region (AVPO) in hypoxic decrease of Th. To this end, Th of unanesthetized Wistar rats was monitored by temperature data loggers before and after intra-AVPO microinjection of the selective kappa-opioid receptor antagonist nor-binaltorphimine dihydrochloride (nor-BNI; 0.1 and 1.0 mu g/100 nL/animal), the selective mu-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2) cyclic (CTAP; 0.1 and 1.0 mu g/100 nL/animal), and the selective delta-opioid receptor antagonist Naltrindole (0.06 and 0.6 mu g/100 nL/animal) or saline (vehicle, 100 nu animal), during normoxia and hypoxia (7% inspired O(2)). Under normoxia, no effect of opioid antagonists on Th was observed. Hypoxia induced Th to reduce in vehicle group, a response that was inhibited by the microinjection intra-AVPO of nor-BNI. In contrast, CTAP and Naltrindole did not change Th during hypoxia but caused a longer latency for the return of Th to the normoxic values just after low O(2) exposure. Our results indicate the kappa-opioid receptor in the AVPO is important for the reduction of Th during hypoxia while the mu and delta receptors are involved in the increase of Th during normoxia post-hypoxia. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Objective: To assess the temperature variation in the cervical, middle and apical thirds of root external wall, caused by 980-nm diode laser irradiation with different parameters. Methods: The roots of 90 canines, had their canals instrumented and were randomly distributed into 3 groups (n = 30) according to the laser potency (1.5 W, 3.0 W and 5.0 W). Each group was subdivided into 3 (n = 10) according to the frequency (CM, 100 Hz and 1000 Hz), and each subgroup divided into 2 (n = S): dried canal or filled with distilled water. The maximum temperature values were collected by 3 thermocouples located at each third of the root external wall and recorded by digital thermometers. Results: The groups irradiated in the continuous mode (CM) presented the highest values (11.82 +/- 5.78), regardless of the canals were dry or not, which were statistically different (p < 0.01) from those obtained with 100 Hz (6.22 +/- 3.64) and 1000 Hz (6.00 +/- 3.36), which presented no statistical difference between them (p > 0.01). The groups irradiated with 5.0 W presented the greatest temperature variation (12.15 +/- 5.14), followed by 3.0 W (7.88 +/- 3.92) and 1.5 W (4.02 +/- 2.16), differing between them (p < 0.01). The cervical third of the root presented the highest temperature rises (9.68 +/- 5.80), followed by the middle (7.66 +/- 4.87) and apical (6.70 +/- 4.23), with statistical difference among them (p < 0.01). After 30 s from the end of irradiation, all the specimens presented temperature variation lower than 10 degrees C. Conclusions: Application of 980-nm diode laser in the root, at 1.5 W in all operating modes, and 3.0 W, in the pulsed mode, for 20 s, can safely be used in endodontic treatment, irrespective of the presence of humidity. (C) 2008 Elsevier Ltd. All rights reserved.