269 resultados para BIOLOGICAL CHARACTERIZATION
Resumo:
The performance of a new trickling filter (TF) configuration composed of an upper compartment for nitrification and a lower compartment for denitrification of effluent from a UASB reactor treating domestic sewage was evaluated. The TF was packed with new plastic material characterized by its durability and high percentage of void spaces. The feasibility of using the reduced compounds present in the biogas produced by a UASB reactor as electron donor for denitrification was also evaluated. Efficient nitrification and denitrification was achieved for the mean hydraulic (5.6 m(3) m(-2) d(-1)) organic (0.26 kg COD m(-3) d(-1)) and ammonia-N (0.08 kg m(-3) d(-1)) loading rates applied, resulting in ammonia-N removal ranging from 60 to 74%. The final effluent presented ammonia-N lower than 13 mg L(-1). Despite the presence of dissolved oxygen (DO) in the denitrification compartment, its performance was considered quite satisfactory and final nitrate concentrations were lower than 10 mg L(-1). The results indicate that methane was the main electron donor used for denitrification. Additionally, denitrification can probably be improved by avoiding high DO concentration in the denitrification compartment and by enhancing biogas transfer in the anoxic zone.
Resumo:
This paper aims to investigate the influence of some dissolved air flotation (DAF) process variables (specifically: the hydraulic detention time in the contact zone and the supplied dissolved air concentration) and the pH values, as pretreatment chemical variables, on the micro-bubble size distribution (BSD) in a DAF contact zone. This work was carried out in a pilot plant where bubbles were measured by an appropriate non-intrusive image acquisition system. The results show that the obtained diameter ranges were in agreement with values reported in the literature (10-100mm), quite independently of the investigated conditions. The linear average diameter varied from 20 to 30mm, or equivalently, the Sauter (d(3,2)) diameter varied from 40 to 50mm. In all investigated conditions, D(50) was between 75% and 95%. The BSD might present different profile (with a bimodal curve trend), however, when analyzing the volumetric frequency distribution (in some cases with the appearance of peaks in diameters ranging from 90-100mm). Regarding volumetric frequency analysis, all the investigated parameters can modify the BSD in DAF contact zone after the release point, thus potentially causing changes in DAF kinetics. This finding prompts further research in order to verify the effect of these BSD changes on solid particle removal efficiency by DAF.
Resumo:
The cyanobacterial population in the Cajati waste stabilization pond system (WSP) from Sao Paulo State, Brazil was assessed by cell isolation and direct microscope counting techniques. Ten strains, belonging to five genera (Synechococcus, Merismopedia, Leptolyngbya, Limnothrix, and Nostoc), were isolated and identified by morphological and molecular analyses. Morphological identification of the isolated strains was congruent with their phylogenetic analyses based on 16S rDNA gene sequences. Six cyanobacterial genera (Synechocystis, Aphanocapsa, Merismopedia, Lyngbya, Phormidium, and Pseudanabaena) were identified by direct microscope inspection. Both techniques were complementary, since, of the six genera identified by direct microscopic inspection, only Merismopedia was isolated, and the four other isolated genera were not detected by direct inspection. Direct microscope counting of preserved cells showed that cyanobacteria were the dominant members (> 90%) of the phytoplankton community during both periods evaluated (summer and autumn). ELISA tests specific for hepatotoxicmicrocystins gave positive results for six strains (Synechococcus CENA108, Merismopedia CENA106, Leptolyngbya CENA103, Leptolyngbya CENA112, Limnothrix CENA109, and Limnothrix CENA110), and for wastewater samples collected from raw influent (3.70 mu g microcystins/l) and treated effluent (3.74 mu g microcystins/l) in summer. Our findings indicate that toxic cyanobacteria in WSP systems are of concern, since the treated effluent containing cyanotoxins will be discharged into rivers, irrigation channels, estuaries, or reservoirs, and can affect human and animal health.
Resumo:
Multilayer CVD coatings for high speed cutting applications were designed to achieve high wear and heat resistance during machining of steel alloys. In this work the microstructure and cutting performance of these novel multilayer CVD coatings are investigated and compared with standard CVD multilayer coatings. 3D-FIB tomography is used to characterize the microstructure of the layers, especially the transition between the Ti(C,N) and the Al(2)O(3) layer. The 3D reconstruction of the surface of the Ti(C,N) layer shows the formation of protruded Ti(C,N) grains with a very particular architecture, which penetrate into the Al(2)O(3) top-layer, providing a mechanical anchoring between both layers. Cemented carbides coated with the novel CVD multilayer present reduced crater and flank wear as well as improved adherence between the Al(2)O(3) top-layer and the Ti(C,N) layer leading to a dramatic improvement of cutting performance.
Resumo:
The superiority of superaustenitic stainless steel (SASS) lies in its good weldability and great resistance to stress corrosion and pitting, because of its higher chromium, molybdenum, and nitrogen contents, when compared to general stainless steels. However, some of its applications are limited by very poor wear behavior. Plasma-nitriding is a very effective treatment for producing wear resistant and hard surface layers on stainless steels without compromising the corrosion resistance. In this work, UNS S31254 SASS samples were plasma-nitrided at three different temperatures (400, 450, and 500 degrees C), under a pressure of 500 Pa, for 5 h, in order to verify the influence of the temperature on the morphology, wear, and corrosion behavior of the modified surface layers. The plasma-nitrided samples were analyzed by means of optical microscopy, micro-hardness. X-ray diffraction, wear, and corrosion tests. Wear tests were conducted in a fixed ball micro-wear machine and corrosion behavior was carried out in natural sea water by means of potentiodynamic polarization curves. For the sample which was plasma-nitrided at 400 degrees C, only the expanded austenite phase was observed, and for the treatments performed at 450 and 500 degrees C, chromium nitrides (CrN and Cr(2)N) were formed in addition to the expanded austenite. Wear volume and Knoop surface hardness increased as the plasma-nitriding temperature increased. Higher wear rates were observed at high temperatures, probably due to the increment on layer fragility. The sample modified at 400 degrees C exhibited the best corrosion behavior among all the plasma-nitriding conditions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
AISI D2 is the most commonly used cold-work tool steel of its grade. It offers high hardenability, low distortion after quenching, high resistance to softening and good wear resistance. The use of appropriate hard coatings on this steel can further improve its wear resistance. Boronizing is a surface treatment of Boron diffusion into the substrate. In this work boride layers were formed on AISI D2 steel using borax baths containing iron-titanium and aluminium, at 800 degrees C and 1000 degrees C during 4 h. The borided treated steel was characterized by optical microscopy, Vickers microhardness, X-ray diffraction (XRD) and glow discharge optical spectroscopy (GDOS) to verify the effect of the bath compositions and treatment temperatures in the layer formation. Depending on the bath composition, Fe(2)B or FeB was the predominant phase in the boride layers. The layers exhibited ""saw-tooth"" morphology at the substrate interface; layer thicknesses varied from 60 to 120 mu m, and hardness in the range of 1596-1744 HV were obtained. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The characterization of a coffee gene encoding a protein similar to miraculin-like proteins, which are members of the plant Kunitz serine trypsin inhibitor (STI) family of proteinase inhibitors (PIs), is described. PIs are important proteins in plant defence against insects and in the regulation of proteolysis during plant development. This gene has high identity with the Richadella dulcifica taste-modifying protein miraculin and with the tomato protein LeMir; and was named as CoMir (Coffea miraculin). Structural protein modelling indicated that CoMir had structural similarities with the Kunitz STI proteins, but suggested specific folding structures. CoMir was up-regulated after coffee leaf miner (Leucoptera coffella) oviposition in resistant plants of a progeny derived from crosses between C. racemosa (resistant) and C. arabica (susceptible). Interestingly, this gene was down-regulated during coffee leaf miner herbivory in susceptible plants. CoMir expression was up-regulated after abscisic acid application and wounding stress and was prominent during the early stages of flower and fruit development. In situ hybridization revealed that CoMir transcripts accumulated in the anther tissues that display programmed cell death (tapetum, endothecium and stomium) and in the metaxylem vessels of the petals, stigma and leaves. In addition, the recombinant protein CoMir shows inhibitory activity against trypsin. According to the present results CoMir may act in proteolytic regulation during coffee development and in the defence against L. coffeella. The similarity of CoMir with other Kunitz STI proteins and the role of CoMir in plant development and plant stress are discussed.
Resumo:
A laboratory scale activated sludge sequencing batch reactor was operated in order to obtain total removal of influent ammonia (200; 300 and 500 mg NH(3)-N.L(-1)) with sustained nitrite accumulation at the end of the aerobic stages with phenol (1,000 mg C(6)H(5)OH.L(-1)) as the carbon source for denitrifying microorganisms during the anoxic stages. Ammonia removal above 95% and ratios of (NO(2)(-)-N / (NO(2)(-)-N + NO(3)(-)-N)) ranging from 89 to 99% were obtained by controlling the dissolved oxygen concentration (1.0 mg O(2).L(-1)) and the pH value of 8.3 during the aerobic stages. Phenol proved to be an adequate source of carbon for nitrogen removal via nitrite with continuous feeding throughout part of the anoxic stage. Nitrite concentrations greater than 70.0 mg NO(2)(-)-N.L(-1) inhibited the biological denitritation process.
Resumo:
A broader characterization of industrial wastewaters, especially in respect to hazardous compounds and their potential toxicity, is often necessary in order to determine the best practical treatment (or pretreatment) technology available to reduce the discharge of harmful pollutants to the environment or publicly owned treatment works. Using a toxicity-directed approach, this paper sets the base for a rational treatability study of polyester resin manufacturing. Relevant physical and chemical characteristics were determined. Respirometry was used for toxicity reduction evaluation after physical and chemical effluent fractionation. Of all the procedures investigated, only air stripping was significantly effective in reducing wastewater toxicity. Air stripping in pH 7 reduced toxicity in 18.2%, while in pH 11 a toxicity reduction of 62.5% was observed. Results indicated that toxicants responsible for the most significant fraction of the effluent`s instantaneous toxic effect to unadapted activated sludge were organic compounds poorly or not volatilized in acid conditions. These results led to useful directions for conducting treatability studies which will be grounded on actual effluent properties rather than empirical or based on the rare specific data on this kind of industrial wastewater. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The magnetic Barkhausen energy in the rolling and transversal directions of AISI/SAE 1070 annealed surfaces is studied. The measurements were made in the samples under applied tension in the elastic-plastic region for different angular directions. The outcomes evidence that the magnetic anisotropy coefficient can be used to characterize the linear and nonlinear elastic limits of the material tinder tensile tresses. The results also show that the area of the curve corresponding to the angular dependence of the number of Barkhausen jumps with average energy presents a maximum value that corresponds to the elastic limit of the sample. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This work describes the use of a large-aperture PVDF receiver in the measurement of liquid density and composite material elastic constants. The density measurement of several liquids is obtained with accuracy of 0.2% using a conventional NDE emitter transducer and a 70-mm-diameter, 52-mu m P(VDF-TrFE) membrane with gold electrodes. The determination of the elastic constants is based on the phase velocity measurement. Diffraction can lead to errors around 1% in velocity measurement when using alternatively the conventional pair of ultrasonic transducers (1-MHz frequency and 19-mm-diameter) operating in through-transmission mode, separated by a distance of 100 mm. This effect is negligible when using a pair of 10-MHz, 19-mm-diameter transducers. Nevertheless, the dispersion at 10 MHz can result in errors of about 0.5%, when measuring the velocity in composite materials. The use of an 80-mm diameter, 52-mu m-thick PVDF membrane receiver practically eliminates the diffraction effects in phase velocity measurement. The elastic constants of a carbon fiber reinforced polymer were determined and compared with the values obtained by a tensile test. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
Flow pumps are important tools in several engineering areas, such as in the fields of bioengineering and thermal management solutions for electronic devices. Nowadays, many of the new flow pump principles are based on the use of piezoelectric actuators, which present some advantages such as miniaturization potential and lower noise generation. In previous work, authors presented a study of a novel pump configuration based on placing an oscillating bimorph piezoelectric actuator in water to generate flow. It was concluded that this oscillatory behavior (such as fish swimming) yields vortex interaction, generating flow rate due to the action and reaction principle. Thus, following this idea the objective of this work is to explore this oscillatory principle by studying the interaction among generated vortex from two bimorph piezoelectric actuators oscillating inside the same pump channel, which is similar to the interaction of vortex generated by frontal fish and posterior ones when they swim together in a group formation. It is shown that parallel-series configurations of bimorph piezoelectric actuators inside the same pump channel provide higher flow rates and pressure for liquid pumping than simple parallel-series arrangements of corresponding single piezoelectric pumps, respectively. The scope of this work includes structural simulations of bimorph piezoelectric actuators, fluid flow simulations, and prototype construction for result validation.
Resumo:
Flow pumps have been developed for classical applications in Engineering, and are important instruments in areas such as Biology and Medicine. Among applications for this kind of device we notice blood pump and chemical reagents dosage in Bioengineering. Furthermore, they have recently emerged as a viable thermal management solution for cooling applications in small-scale electronic devices. This work presents the performance study of a novel principle of a piezoelectric flow pump which is based oil the use of a bimorph piezoelectric actuator inserted in fluid (water). Piezoelectric actuators have some advantages over classical devices, such as lower noise generation and ease of miniaturization. The main objective is the characterization of this piezoelectric pump principle through computational simulations (using finite element software), and experimental tests through a manufactured prototype. Computational data, Such as flow rate and pressure curves, have also been compared with experimental results for validation purposes. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This article presents a systematic and logical study of the topology optimized design, microfabrication, and static/dynamic performance characterization of an electro-thermo-mechanical microgripper. The microgripper is designed using a topology optimization algorithm based on a spatial filtering technique and considering different penalization coefficients for different material properties during the optimization cycle. The microgripper design has a symmetric monolithic 2D structure which consists of a complex combination of rigid links integrating both the actuating and gripping mechanisms. The numerical simulation is performed by studying the effects of convective heat transfer, thermal boundary conditions at the fixed anchors, and microgripper performance considering temperature-dependent and independent material properties. The microgripper is fabricated from a 25 mm thick nickel foil using laser microfabrication technology and its static/dynamic performance is experimentally evaluated. The static and dynamic electro-mechanical characteristics are analyzed as step response functions with respect to tweezing/actuating displacements, applied current/power, and actual electric resistance. A microgripper prototype having overall dimensions of 1mm (L) X 2.5mm (W) is able to deliver the maximum tweezing and actuating displacements of 25.5 mm and 33.2 mm along X and Y axes, respectively, under an applied power of 2.32 W. Experimental performance is compared with finite element modeling simulation results.
Resumo:
Two different commercial crosslinked resins (Amberlite GT73 and Amberlite IRC748) were employed for anchoring silver. The -SH and -N(CH2COOH)2 groups, respectively, present on these resins were used for Ag+ chelation from an aqueous solution. The Ag+ ions were reduced with three different reductants: hydrazine, hydroxylamine, and formaldehyde (under an alkaline pH). The produced composites were characterized with thermogravimetry/differential thermogravimetry and scanning electron microscopy combined with a backscattered scanning electron detector. Energy-dispersive X-ray spectroscopy coupled to scanning electron microscopy allowed the observation of submicrometer particles of silver, and chemical microanalysis of emitted X-rays revealed the presence of metal on the internal and external surfaces of the composite microspheres. The amount of incorporated silver was determined by titration. The antibacterial activity of the silver/resin composites was determined toward 10(3)-10(7) cells/mL dilutions of the auxotrophic AB1157 Escherichia coli strain; the networks containing anchored submicrometer silver particles were completely bactericidal within a few minutes because of the combined action of silver and functional groups of the resins. (c) 2007 Wiley Periodicals, Inc.