228 resultados para 830 NM LASER


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conversion of red excitation light into blue emission light (uphill energy conversion) using unstable 1,2-dioxetanes is described. The method is based on 1,2-dioxetane formation by red-light sensitized photooxygenation of adequate alkenes and subsequent blue-light emission due to thermal 1,2-dioxetane cleavage. The energy gain resulting from the chemical energy obtained in the transformation of an alkene into two carbonyl compounds transforms a red-light excitation laser beam into a blue-light chemiluminescence emission, producing thereby a formal anti-Stokes shift of 200-250 nm, opening up a whole spectrum of possible applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have systematically studied the magnetic properties of ferrite nanoparticles with 3, 7, and 11 nm of diameter with very narrow grain size distributions. Samples were prepared by the thermal decomposition of Fe (acac)(3) in the presence of surfactants giving nanoparticles covered by oleic acid. High resolution transmission electron microscopy (HRTEM) images and XRD diffraction patterns confirms that all samples are composed by crystalline nanoparticles with the spinel structure expected for the iron ferrite. ac and dc magnetization measurements, as well in-field Mossbauer spectroscopy, indicate that the magnetic properties of nanoparticles with 11 and 7 nm are close to those expected for a monodomain, presenting large M(S) (close to the magnetite bulk). Despite the crystalline structure observed in HRTEM images, the nanoparticles with 3 nm are composed by a magnetically ordered region (core) and a surface region that presents a different magnetic order and it contains about 66% of Fe atoms. The high saturation and irreversibility fields in the M(H) loops of the particles with 3 nm together with the misalignment at 120 kOe in the in-field Mossbauer spectrum of surface component indicate a high surface anisotropy for the surface atoms, which is not observed for the core. For T < 10 K, we observe an increase in the susceptibility and of the magnetization for former sample, indicating that surface moments tend to align with applied field increasing the magnetic core size. (C) 2010 American Institute of Physics. [doi:10.1063/1.3514585]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The purpose of this study was to evaluate in vitro the Knoop microhardness (Knoop hardness number [KHN]) and the degree of conversion using FT-Raman spectroscopy of a light-cured microhybrid resin composite (Z350-3M-ESPE) Vita shade A3 photopolymerized with a halogen lamp or an argon ion laser. Background Data: Optimal polymerization of resin-based dental materials is important for longevity of restorations in dentistry. Materials and Methods: Thirty specimens were prepared and inserted into a disc-shaped polytetrafluoroethylene mold that was 2.0 mm thick and 3 mm in diameter. The specimens were divided into three groups (n = 10 each). Group 1 (G1) was light-cured for 20 sec with an Optilux 501 halogen light with an intensity of 1000 mW/cm(2). Group 2 (G2) was photopolymerized with an argon laser with a power of 150 mW for 10 sec, and group 3 (G3) was photopolymerized with an argon laser at 200 mW of power for 10 sec. All specimens were stored in distilled water for 24 h at 37 degrees C and kept in lightproof containers. For the KHN test five indentations were made and a depth of 100 mu m was maintained in each specimen. One hundred and fifty readings were obtained using a 25-g load for 45 sec. The degree of conversion values were measured by Raman spectroscopy. KHN and degree of conversion values were obtained on opposite sides of the irradiated surface. KHN and degree of conversion data were analyzed by one-way ANOVA and Tukey tests with statistical significance set at p < 0.05. Results: The results of KHN testing were G1 = 37.428 +/- 4.765; G2 = 23.588 +/- 6.269; and G3 = 21.652 +/- 4.393. The calculated degrees of conversion (DC%) were G1 = 48.57 +/- 2.11; G2 = 43.71 +/- 3.93; and G3 = 44.19 +/- 2.71. Conclusions: Polymerization with the halogen lamp ( G1) attained higher microhardness values than polymerization with the argon laser at power levels of 150 and 200 mW; there was no difference in hardness between the two argon laser groups. The results showed no statistically significant different degrees of conversion for the polymerization of composite samples with the two light sources tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of laser induced breakdown spectrometry (LIBS) aiming the direct analysis of plant materials is a great challenge that still needs efforts for its development and validation. In this way, a series of experimental approaches has been carried out in order to show that LIBS can be used as an alternative method to wet acid digestions based methods for analysis of agricultural and environmental samples. The large amount of information provided by LIBS spectra for these complex samples increases the difficulties for selecting the most appropriated wavelengths for each analyte. Some applications have suggested that improvements in both accuracy and precision can be achieved by the application of multivariate calibration in LIBS data when compared to the univariate regression developed with line emission intensities. In the present work, the performance of univariate and multivariate calibration, based on partial least squares regression (PLSR), was compared for analysis of pellets of plant materials made from an appropriate mixture of cryogenically ground samples with cellulose as the binding agent. The development of a specific PLSR model for each analyte and the selection of spectral regions containing only lines of the analyte of interest were the best conditions for the analysis. In this particular application, these models showed a similar performance. but PLSR seemed to be more robust due to a lower occurrence of outliers in comparison to the univariate method. Data suggests that efforts dealing with sample presentation and fitness of standards for LIBS analysis must be done in order to fulfill the boundary conditions for matrix independent development and validation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soils are an important component in the biogeochemical cycle of carbon, storing about four times more carbon than biomass plants and nearly three times more than the atmosphere. Moreover, the carbon content is directly related on the capacity of water retention, fertility. among other properties. Thus, soil carbon quantification in field conditions is an important challenge related to carbon cycle and global climatic changes. Nowadays. Laser Induced Breakdown Spectroscopy (LIBS) can be used for qualitative elemental analyses without previous treatment of samples and the results are obtained quickly. New optical technologies made possible the portable LIBS systems and now, the great expectation is the development of methods that make possible quantitative measurements with LIBS. The goal of this work is to calibrate a portable LIBS system to carry out quantitative measures of carbon in whole tropical soil sample. For this, six samples from the Brazilian Cerrado region (Argisoil) were used. Tropical soils have large amounts of iron in their compositions, so the carbon line at 247.86 nm presents strong interference of this element (iron lines at 247.86 and 247.95). For this reason, in this work the carbon line at 193.03 nm was used. Using methods of statistical analysis as a simple linear regression, multivariate linear regression and cross-validation were possible to obtain correlation coefficients higher than 0.91. These results show the great potential of using portable LIBS systems for quantitative carbon measurements in tropical soils. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quality control of toys for avoiding children exposure to potentially toxic elements is of utmost relevance and it is a common requirement in national and/or international norms for health and safety reasons. Laser-induced breakdown spectroscopy (LIBS) was recently evaluated at authors` laboratory for direct analysis of plastic toys and one of the main difficulties for the determination of Cd. Cr and Pb was the variety of mixtures and types of polymers. As most norms rely on migration (lixiviation) protocols, chemometric classification models from LIBS spectra were tested for sampling toys that present potential risk of Cd, Cr and Pb contamination. The classification models were generated from the emission spectra of 51 polymeric toys and by using Partial Least Squares - Discriminant Analysis (PLS-DA), Soft Independent Modeling of Class Analogy (SIMCA) and K-Nearest Neighbor (KNN). The classification models and validations were carried out with 40 and 11 test samples, respectively. Best results were obtained when KNN was used, with corrected predictions varying from 95% for Cd to 100% for Cr and Pb. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser induced breakdown spectrometry (LIBS) was applied for the determination of macro (P, K, Ca, Mg) and micronutrients (B, Cu, Fe, Mn and Zn) in sugar cane leaves, which is one of the most economically important crops in Brazil. Operational conditions were previously optimized by a neuro-genetic approach, by using a laser Nd:YAG at 1064 nm with 110 mJ per pulse focused on a pellet surface prepared with ground plant samples. Emission intensities were measured after 2.0 mu s delay time, with 4.5 mu s integration time gate and 25 accumulated laser pulses. Measurements of LIBS spectra were based on triplicate and each replicate consisted of an average of ten spectra collected in different sites (craters) of the pellet. Quantitative determinations were carried out by using univariate calibration and chemometric methods, such as PLSR and iPLS. The calibration models were obtained by using 26 laboratory samples and the validation was carried out by using 15 test samples. For comparative purpose, these samples were also microwave-assisted digested and further analyzed by ICP OES. In general, most results obtained by LIBS did not differ significantly from ICP OES data by applying a t-test at 95% confidence level. Both LIBS multivariate and univariate calibration methods produced similar results, except for Fe where better results were achieved by the multivariate approach. Repeatability precision varied from 0.7 to 15% and 1.3 to 20% from measurements obtained by multivariate and univariate calibration, respectively. It is demonstrated that LIBS is a powerful tool for analysis of pellets of plant materials for determination of macro and micronutrients by choosing calibration and validation samples with similar matrix composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By the use of installed fibers inside the city we demonstrated a 48.8 km ultralong Erbium-doped fiber laser in modelocking regime with repetition rate varying from 1-10 GHz. The shortest pulse duration of 42 ps at 2.5 GHz was obtained by optimization of intracavity dispersion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents the fabrication of two-dimensional diffraction gratings in diamond-like carbon (DLC) thin films, with applications in computer-generated holography and micro optics. In order to achieve high diffraction efficiency and to have a very simple manufacturing process, the device is designed to modulate only the phase of an incoming coherent monochromatic laser beam (632.8 nm, HeNe laser). This modulation is obtained by implementing a binary microrelief in the DLC film, responsible for generating a localized optical path difference of half a wavelength. This microrelief is obtained by anisotropic reactive ion etching of the DLC surface in an oxygen based plasma. The DLC layer was grown by reactive magnetron sputtering, using a methane-based plasma chemistry. AFM measurements show a low-level surface roughness of less than 1% of the operation wavelength, and optical characterization shows a good quality of the reconstructed diffraction patterns. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface heat treatment in glasses and ceramics, using CO(2) lasers, has attracted the attention of several researchers around the world due to its impact in technological applications, such as lab-on-a-chip devices, diffraction gratings and microlenses. Microlens fabrication on a glass surface has been studied mainly due to its importance in optical devices (fiber coupling, CCD signal enhancement, etc). The goal of this work is to present a systematic study of the conditions for microlens fabrications, along with the viability of using microlens arrays, recorded on the glass surface, as bidimensional codes for product identification. This would allow the production of codes without any residues (like the fine powder generated by laser ablation) and resistance to an aggressive environment, such as sterilization processes. The microlens arrays were fabricated using a continuous wave CO(2) laser, focused on the surface of flat commercial soda-lime silicate glass substrates. The fabrication conditions were studied based on laser power, heating time and microlens profiles. A He-Ne laser was used as a light source in a qualitative experiment to test the viability of using the microlenses as bidimensional codes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the aim of investigating a laser-welded dissimilar joint of TWIP and TRIP steel sheets, the microstructure was characterized by means of OM, SEM, and EBSD to differentiate the fusion zone, heat-affected zone, and the base material. OIM was used to differentiate between ferritic, bainitic, and martensitic structures. Compositions were measured by means of optical emission spectrometry and EDX to evaluate the effect of manganese segregation. Microhardness measurements and tensile tests were performed to evaluate the mechanical properties of the joint. Residual stresses and XRD phase quantification were used to characterize the weld. Grain coarsening and martensitic areas were found in the fusion zone, and they had significant effects on the mechanical properties of the weld. The heat-affected zone of the TRIP steel and the corresponding base material showed considerable differences in the microstructure and properties. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a comparison between laser weld (LBW) and electric resistance spot weld (ERSW) processes used for assemblies of components in a body-in-white (BIW) at a world class automotive industry. It is carried out by evaluating the mechanical strength modeled both by experimental and numerical methods. An ""Arcan"" multiaxial test was designed and manufactured in order to enable 0 degrees, 45 degrees and 90 degrees directional loadings. The welded specimens were uncoated low carbon steel sheets (S-y = 170 MPa) used currently at the automotive industry, with two different thicknesses: 0.80 and 1.20 mm. A numerical analysis was carried out using the finite element method (FEM) through LS-DYNA code. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have found photoinduced second harmonic generation at wavelength 1064 nm during bicolor Nd:YAG laser coherent treatment of TeO(2)-ZnO and GeO(2)-PbO amorphous films. The maximally achieved second order susceptibility was equal to about 1.02 pm/V. Correlation of the induced second order susceptibility with local sample heating and induced birefringence may indicate an occurrence of local phase transitions from amorphous glass-like phase to non-centrosymmetry metastable phases. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron beam induced second harmonic generation (SHG) is studied in Er(3+) doped PbO-GeO(2) glasses containing silver nanoparticles with concentrations that are controlled by the heat-treatment of the samples. The SHG is observed at T = 4.2 K using a p-polarized laser beam at 1064 nm. Enhancement of the SHG is observed in the samples that are submitted to electron beam incidence. The highest value of the nonlinear susceptibility, 2.08 pm/V, is achieved for the sample heat-treated during 72 h and submitted to an electron beam current of 15 nA. The samples that were not exposed to the electron beam present a susceptibility of a parts per thousand 0.5 pm/V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents for the first time to our knowledge the fabrication and characterization of rib waveguides produced with PbO-GeO(2) (PGO) thin films. The target was manufactured using pure oxides ( 60 PbO-40 GeO(2), in wt%) and amorphous thin films were produced with the RF sputtering technique. PGO thin films present small absorption in the visible and in the near infrared and refractive index of similar to 2.0. The definition of the rib waveguide structure was made using conventional optical lithography followed by plasma etching, performed in a Reactive Ion Etching (RIE) reactor. Light propagation mode in the waveguide structure was analyzed using integrated optic simulation software. Optical loss measurements were performed to determine the propagation loss at 633 nm, for ribs with height of 70 nm and width of 3-5 mu m; experimental values around 2 dB/cm were found for the propagation loss and confirmed the theoretical calculations. The results obtained demonstrate that PGO thin films are potential candidates for application in integrated optics. Published by Elsevier B.V.