163 resultados para proper name
Resumo:
The biomechanics of the sacroiliac joint makes the pelvic segment responsible for proper weight distribution between lower extremities; however, it is known to be susceptible to altered mobility. The objective of this study was to analyze baropodometric responses following thrust manipulation on subjects with sacroiliac joint restrictions. Twenty asymptomatic subjects were submitted to computerized baropodometric analysis before, after, and seven days following sacroiliac manipulation. The variables peak pressure and contact area were obtained at each of these periods as the average of absolute values of the difference between the right and left foot based on three trials. Data revealed significant reduction only in peak pressure immediately after manipulation and at follow-up when compared to pre-manipulative values (p < 0.05). Strong correlation was found between the dominant foot and the foot with greater contact area (r - 0.978), as well as between the side of joint restriction and the foot with greater contact area (r = 0.884). Weak correlation was observed between the dominant foot and the foot with greater peak pressure (r = 0.501), as well as between the side of joint restriction and the foot with greater peak pressure (r = 0.694). The results suggest that sacroiliac joint manipulation can influence peak pressure distribution between feet, but contact area does not seem to be related to the biomechanical aspects addressed in this study. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Stimulating neural electrodes are required to deliver charge to an environment that presents itself as hostile. The electrodes need to maintain their electrical characteristics (charge and impedance) in vivo for a proper functioning of neural prostheses. Here we design implantable multi-walled carbon nanotubes coating for stainless steel substrate electrodes, targeted at wide frequency stimulation of deep brain structures. In well-controlled, low-frequency stimulation acute experiments, we show that multi-walled carbon nanotube electrodes maintain their charge storage capacity (CSC) and impedance in vivo. The difference in average CSCs (n = 4) between the in vivo (1.111 mC cm(-2)) and in vitro (1.008 mC cm(-2)) model was statistically insignificant (p > 0.05 or P-value = 0.715, two tailed). We also report on the transcription levels of the pro-inflammatory cytokine IL-1 beta and TLR2 receptor as an immediate response to low-frequency stimulation using RT-PCR. We show here that the IL-1 beta is part of the inflammatory response to low-frequency stimulation, but TLR2 is not significantly increased in stimulated tissue when compared to controls. The early stages of neuroinflammation due to mechanical and electrical trauma induced by implants can be better understood by detection of pro-inflammatory molecules rather than by histological studies. Tracking of such quantitative response profits from better analysis methods over several temporal and spatial scales. Our results concerning the evaluation of such inflammatory molecules revealed that transcripts for the cytokine IL-1 beta are upregulated in response to low-frequency stimulation, whereas no modulation was observed for TLR2. This result indicates that the early response of the brain to mechanical trauma and low-frequency stimulation activates the IL-1 beta signaling cascade but not that of TLR2.
Resumo:
We present a comparative study of the physico-chemical properties, in vitro cytotoxicity and in vivo antibody production of surface-complexed DNA in EPC/DOTAP/DOPE (50/25/25% molar) liposomes and DOTAP/DOPE (50/50% molar) lipoplexes. The study aims to correlate the biological behavior and structural properties of the lipid carriers. We used DNA-hsp65, whose naked action as a gene vaccine against tuberculosis has already been demonstrated. Additionally, surface-complexed DNA-hsp65 in EPC/DOTAP/DOPE (50/25/25% molar) liposomes was effective as a single-dose tuberculosis vaccine. The results obtained showed that the EPC inclusion stabilized the DOTAP/DOPE structure, producing higher melting temperature and lower zeta potential despite a close mean hydrodynamic diameter. Resemblances in morphologies were identified in both structures, although a higher fraction of loaded DNA was not electrostatically bound in EPC/DOTAP/DOPE. EPC also induced a striking reduction in cytotoxicity, similar to naked DNA-hsp65. The proper immune response lead to a polarized antibody production of the IgG2a isotype, even for the cytotoxic DOTAP/DOPE. However, the antibody production was detected at 15 and 30 days for DOTAP/DOPE and EPC/DOTAP/DOPE, respectively. Therefore, the in vivo antibody production neither correlates with the in vitro cytotoxicity, nor with the structural stability alone. The synergistic effect of the structural stability and DNA electrostatic binding upon the surface of structures account for the immunological effects. By adjusting the composition to generate proper packing and cationic lipid/DNA interaction, we allow for the optimization of liposome formulations for required immunization or gene therapy. In a specific manner, our results contribute to studies on the tuberculosis therapy and vaccination. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Purpose: The effects of anxiety on the patient and his/her family are known to be the main factors that influence health recovery in child surgery. When the whole family can be prepared and supported by psychologic intervention, the damage to child behavior and family anxiety is attenuated. Methods: This study was conducted in children between 2 and 6 years old, divided into 2 groups of 10 pairs each. The experimental group received psychologic intervention, whereas the control group did not. One month after the surgery, they were reevaluated and compared with the same instruments used in the beginning of the study. The instruments used were as follows: the State-Trait Anxiety Inventory with the mothers and the Rutter`s Child Behavior A2 Scale and the Posthospital Behavior Questionnaire with the children. Results: The results were compared by the Wilcoxon and Mann-Whitney nonparametric tests for independent samples, both at the P <.05 significance levels. Mothers stated that anxiety was different in the postsurgery period, showing a significant decrease when comparing the experimental and control groups. Both instruments to measure child behavior also showed that prepared children had less habit changes than the control group, which showed increased levels of inadequate behavior. Conclusions: These data confirm reports in literature regarding child preparation before medical intervention and reinforces the importance of specialized presurgery planning procedures by the proper professional interfaced with the surgical colleagues, all aiming toward the best recovery for the children. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Endothelin-1 (ET-1) and urotensin-II (U-II) are the most potent constrictors of human vessels. Although the cavernosal tissue is highly responsive to ET-1, no information exists on the effects of U-II on cavernosal function. The aim of this study was to characterize ET-1 and U-II responses in corpora cavernosa from rats and mice. Male Wistar rats and C57/BL6 mice were used at 13 weeks. Cumulative concentration-response curves to ET-1, U-II, and IRL-1620, an ET(B) agonist, were performed. ET-1 increased force generation in cavernosal strips from mice and rats, but no response to U-II was observed in the presence or absence of N(omega)-nitro-L-arginine methyl ester (L-NAME), or in strips prestimulated with 20 mM KCI. IRL-1620 did not induce cavernosal contraction even in presence of L-NAME, but induced a cavernosal relaxation that was greater in rats than mice. No relaxation responses to U-II were observed in cavernosal strips precontracted with phenylephrine. mRNA expression of ET-1, ET(A), ET(B), and U-II receptors, but not U-II was observed in cavernosal strips. ET-1, via ET(A) receptors activation, causes contractile responses in cavernosal strips from rats and mice, whereas ET(B) receptor activation produces relaxation. Although the cavernosal tissue expresses U-II receptors, U-II does not induce contractile responses in corpora cavernosa from mice or rats. J Am Soc Hypertens 2008;2(6): 439-447. Published by Elsevier Inc. on behalf of the American Society of Hypertension.
Resumo:
Phylloquinone (vitamin K-1, VK1) is widely used therapeutically and intravenous administration of this quinone can induce hypotension. We aimed to investigate the mechanisms underlying the effects induced by VK1 on arterial blood pressure. With this purpose a catheter was inserted into the abdominal aorta of male Wistar rats for blood pressure and heart rate recording. Bolus intravenous injection of VK1 (0.5-20 mg kg(-1)) produced a transient increase in blood pressure followed by a fall. Both the pressor and depressor response induced by VK1 were dose-dependent. On the other hand, intravenous injection of VK1 did not alter heart rate. The nitric oxide synthase (NOS) inhibitor N-G-nitro-L-arginine methyl ester (L-NAME, 10 and 20 mg kg(-1)) reduced both the increase and decrease in blood pressure induced by VK1 (5 mgkg(-1)). On the other hand, indometacin (10 mg kg(-1)), a non-selective cyclooxygenase inhibitor, did not alter the increase in mean arterial pressure (MAP) induced by VK1. However, VK1-induced fall in MAP was significantly attenuated by indometacin. We concluded that VK1 induces a dose-dependent effect on blood pressure that consists of an acute increase followed by a more sustained decrease in MAP. The hypotension induced by VK1 involves the activation of the nitric oxide (NO) pathway and the release of vasodilator prostanoid(s).
Resumo:
The effects of microinjection of the nitric oxide (NO) precursor L-arginine (L-Arg), the NO synthase (NOS) inhibitors N-methyl-L-arginine (L-NAME) and 7-nitroindazole (7-NI), and the cyclic guanosine 3`,5`-monophosphate (cGMP) analog 8-Br-cGMP into the dorsal raphe nucleus (DRN) were assessed in rats using the elevated plus maze (EPM) and the forced swim test (FST). L-Arg (100 and 200 nmol) produced an anxiolytic-like effect in the EPM. 8-Br-cGMP (25 and 50 nmol) dose-dependently increased locomotor activity. In the FST, antidepressant-like effects were produced by L-Arg (50 and 100 nmol) and 8-Br-cGMP (12.5 and 25 nmol). Dual effects were observed with NOS inhibitors L-NAME and 7-NI in both the EPM and FST. While low doses of L-NAME (25 nmol) or 7-NI (1 nmol) induced a selective increase in EPM open arm exploration and a decrease in immobility time in the FST, high doses (L-NAME 400 nmol, 7-NI 10 nmol) decreased locomotor activity. These results show that interference with NO-mediated neurotransmission in the DRN induced significant and complex motor and emotional effects. Further studies are needed to elucidate the mechanisms involved in these effects. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
It is well known that regular physical exercise alter cardiac function and autonomic modulation of heart rate variability (HRV). The paraventricular nucleus of hypothalamus (PVN) is an important site of integration for autonomic and cardiovascular responses, where nitric oxide (NO) plays an important role. The aim of our study was to evaluate the cardiovascular parameters and autonomic modulation by means of spectral analysis after nitric oxide synthase (NOS) inhibition in the PVN in conscious sedentary (S) or swimming trained (ST) rats. After swimming training protocol, adult male Wistar rats, instrumented with guide cannulas to PVN and femoral artery and vein catheters were submitted to mean arterial pressure (MAP) and heart rate (HR) recording. At baseline, the physical training induced a resting bradycardia (S: 374 +/- 5, ST: 346 +/- 1 bpm) and promoted adaptations in HRV characterized by an increase in high-frequency oscillations (HF; 26.43 +/- 6.91 to 88.96 +/- 244) and a decrease in low-frequency oscillations (LF; 73.57 +/- 6.91 to 11.04 +/- 2.44) in normalized units. The microinjection of N(omega)-nitro-L-arginine methyl ester (L-NAME) in the PVN of sedentary and trained rats promoted increase in MAP and HR. L-NAME in the PVN did not significantly alter the spectral parameters of HRV of sedentary animals, however in the trained rats increased LF oscillations (11.04 +/- 2.44 to 27.62 +/- 6.97) and decreased HF oscillations (88.96 +/- 2.44 to 72.38 +/- 6.97) in normalized units compared with baseline. Our results suggest that NO in the PVN may collaborate to cardiac autonomic modulation after exercise training. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Endothelial dysfunction has been linked to a decrease in nitric oxide (NO) bioavailability and attenuated endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation. The small (SK(Ca)) and intermediate (IK(Ca)) calcium-activated potassium channels play a key role in endothelium-dependent relaxation. Because the repressor element 1-silencing transcription factor (REST) negatively regulates IK(Ca) expression, we hypothesized that augmented REST and decreased IK(Ca) expression contributes to impaired endothelium-dependent vasodilation associated with hypertension. Acetylcholine (ACh) responses were slightly decreased in small mesenteric arteries from male stroke-prone spontaneously hypertensive rats (SHRSPs) versus arteries from Wistar Kyoto (WKY) rats. Incubation with N-nitro-L-arginine methyl ester (L-NAME; 100 mu mol/L) and indomethacin (100 mu mol/L) greatly impaired ACh responses in vessels from SHRSP. lberiotoxin (0.1 mu mol/L), which is a selective inhibitor of large-conductance K(Ca) (BK(Ca)) channels, did not modify EDHF-mediated vasodilation in SHRSP or WKY. UCL-1684 (0.1 mu mol/L.), which is a selective inhibitor of SKCa channels, almost abolished EDHF-mediated vasodilation in WKY and decreased relaxation in SHRSP. 1-((2-chlorophenyl)diphenylmethyl)-1H-pyrazole (TRAM-34; 10 mu mol/L) and charybdotoxin (0.1 mu mol/L), which are both IKCa inhibitors, produced a small decrease of EDHF relaxation in WKY but completely abrogated EDHF vasodilation in SHRSP. EDHF-mediated relaxant responses were completely abolished in both groups by simultaneous treatment with UCL-1684 and TRAM-34 or charybdotoxin. Relaxation to SK(Ca)/IK(Ca) channels agonist NS-309 was decreased in SHRSP arteries. The expression of SK(Ca) was decreased, whereas IK(Ca) was increased in SHRSP mesenteric arteries. REST expression was reduced in arteries from SHRSP. Vessels incubated with TRAM-34 (10 mu mol/L) for 24h displayed reduced REST expression and demonstrated no differences in IK(Ca). In conclusion, IK(Ca) channel upregulation, via decreased REST, seems to compensate deficient activity of SK(Ca) channels in the vasculature of spontaneously hypertensive rats. (Translational Research 2009; 154:183-193)
Resumo:
The modulatory effect of nitric oxide/cyclic guanosine monophosphate (NO/cGMP) pathway on sympathetic preganglionic neurons still deserves further investigation. The present study was designed to examine the role of the spinal cord NO/cGMP pathway in controlling mean arterial pressure and heart rate. We observed that intrathecal administration of the NO synthase inhibitor N omega-Nitro-L-arginine methyl ester hydrochloride (L-NAME) causes an increase in mean arterial pressure but does not affect heart rate. Intrathecal administration of the soluble guanylyl cyclase inhibitor 1H-[1,2,4] Oxadiazolo[4,3-a] quinoxalin-1-one (ODQ) does not change mean arterial pressure and heart rate. The precursor for NO synthesis, L-arginine, reduces both mean arterial pressure and heart rate while administration of ODQ before L-arginine impaired decreases in mean arterial pressure and heart rate. Administration of the N-methyl-D-aspartate (NMDA) receptor antagonist DL-2-amino-5-phosphonopentanoic acid (AP5) after L-NAME does not affect increases in mean arterial pressure promoted by NO synthase inhibition. Although the hypotensive and bradycardic responses induced by intrathecal administration of L-arginine depend on cGMP, our results indicate that NO acts to tonically inhibit SPNs, independent of either cGMP or NMDA receptors.
Resumo:
The role of nitric oxide (NO) in the caudal NTS (cNTS) on baseline cardiovascular and respiratory parameters and on changes in respiratory frequency (fR) and cardiovascular responses to chemoreflex activation was evaluated in awake rats. Bilateral microinjections of L-NAME (200 nmoles/50 nL), a non-selective NO synthase (NOS) inhibitor, into the cNTS increased baseline arterial pressure, while microinjections of NPLA (3 pmoles/50 nL), a selective neuronal NOS (nNOS) inhibitor, did not. L-NAME or N-PLA microinjected into the cNTS reduced the increase in fR in response to chemoreflex activation but not cardiovascular responses. These data show that (a) NO produced by non-nNOS in the cNTS is involved in the baseline autonomic control and (b) NO produced by nNOS in the cNTS is involved in modulation of the increase in fR in response to chemoreflex activation but not in the cardiovascular responses. We conclude that NO produced by the neuronal and endothelial NOS play a different role in the cNTS neurons integral to autonomic and respiratory pathways. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
GABAergic, nitrergic and glutamatergic mechanisms in the PVN on the baseline mean arterial pressure (MAP), heart rate (HR) and on the cardiovascular responses to chemoreflex activation in awake rat were evaluated. Chemoreflex was activated with KCN before and after microinjections into the PVN. Bicuculline into the PVN increased baseline MAP (94+/-3 vs 113+/-5 mmHg) and HR (350+/-9 vs 439+/-18 bpm) but had no effect on the pressor (49+/-5 vs 47+/-6 mmHg) or bradicardic (-213+/-23 vs -256+/-42 bpm) responses (n=7). Kynurenic acid into the PVN (n=6) produced no significant changes in the MAP (98+/-3 vs 100+/-3 mmHg), HR (330+/-5 vs 339+/-12 mmHg) or in the pressor (50+/-4 vs 42+/-4 mmHg) and bradicardic (-252+/-4 vs -285+/-16 bpm) responses to chemoreflex. L-NAME into the PVN (n=8) produced increase in the MAP (94+/-3 vs 113+/-5 mmHg) and HR (350+/-9 vs 439+/-18 bpm) but had no effect on the pressor (52+/-5 vs 47+/-6 mmHg) or bradicardic (-253+/-19 vs -320+/-25 bpm) responses to chemoreflex. We conclude that GABA(A) and nitric oxide in the PVN are involved in the maintenance of the baseline MAP but not in the modulation of the responses to chemoreflex. The results also show that Glutamate receptors in the PVN are not involved in maintenance of the baseline MAP, HR or in the cardiovascular responses to chemoreflex in awake rats. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In vitro, nitric oxide (NO) inhibits the firing rate of magnocellular neurosecretory cells (MNCs) of hypothalamic supraoptic and paraventricular nuclei and this effect has been attributed to GABAergic activation. However, little is known about the direct effects of NO in MNCs. We used the patch-clamp technique to verify the effect Of L-arginine, a precursor for NO synthesis, and N-omega-nitro-L-arginine methyl ester hydrochloride (L-NAME), an inhibitor of NOS, on spontaneous electrical activity of MNCs after glutamatergic and GABAergic blockade in Wistar rat brain slices. 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX) (10 mu M) and DL-2-amino-5-phosphonovaleric acid (DL-AP5) (30 mu M) were used to block postsynaptic glutamatergic currents, and picrotoxin (30 mu M) and saclofen (30 mu M) to block ionotropic and metabotropic postsynaptic GABAergic currents. Under these conditions, 500 mu M L-arginine decreased the firing rate from 3.7 +/- 0.6 Hz to 1.3 +/- 0.3 Hz. Conversely, 100 mu M L-NAME increased the firing rate from 3.0 +/- 0.3 Hz to 5.8 +/- 0.4 Hz. All points histogram analysis showed changes in resting potential from -58.1 +/- 0.8 mV to -62.2 +/- 1.1 mV in the presence of L-arginine and from -59.8 +/- 0.7 mV to -56.9 +/- 0.8 mV by L-NAME. Despite the nitrergic modulator effect on firing rate, some MNCs had no significant changes in their resting potential. In those neurons, hyperpolarizing after-potential (HAP) amplitude increased from 12.4 +/- 1.2 mV to 16.8 +/- 0.7 mV by L-arginine, but without significant changes by L-NAME treatment. To our knowledge, this is the first demonstration that NO can inhibit MNCs independent of GABAergic inputs. Further, our results point to HAP as a potential site for nitrergic modulation. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Background and Purpose-Stroke is the leading cause of death in Brazil. This community-based study assessed lay knowledge about stroke recognition and treatment and risk factors for cerebrovascular diseases and activation of emergency medical services in Brazil. Methods-The study was conducted between July 2004 and December 2005. Subjects were selected from the urban population in transit about public places of 4 major Brazilian cities: S (a) over tildeo Paulo, Salvador, Fortaleza, and Ribeir (a) over tildeo Preto. Trained medical students, residents, and neurologists interviewed subjects using a structured, open-ended questionnaire in Portuguese based on a case presentation of a typical patient with acute stroke at home. Results-Eight hundred fourteen subjects were interviewed during the study period (53.9% women; mean age, 39.2 years; age range, 18 to 80 years). There were 28 different Portuguese terms to name stroke. Twenty-two percent did not recognize any warning signs of stroke. Only 34.6% of subjects answered the correct nationwide emergency telephone number in Brazil (# 192). Only 51.4% of subjects would call emergency medical services for a relative with symptoms of stroke. In a multivariate analysis, individuals with higher education called emergency medical services (P=0.038, OR=1.5, 95%, CI: 1.02 to 2.2) and knew at least one risk factor for stroke (P<0.05, OR=2.0, 95% CI: 1.2 to 3.2) more often than those with lower education. Conclusions-Our study discloses alarming lack of knowledge about activation of emergency medical services and availability of acute stroke treatment in Brazil. These findings have implications for public health initiatives in the treatment of stroke and other cardiovascular emergencies.
Resumo:
Because dry eye disease is rare in children and its pathogenesis is less well known than in adults, its diagnosis is often overlooked. It can occur in association with a number of congenital, autoimmune, endocrine, and inflammatory disorders, or under certain environmental and nutritional conditions. In some cases, early detection allows the underlying cause of the dry eye to be successfully treated and eliminated. In other cases, the disease may represent a lifelong problem, whose proper management can prevent ulceration and scarring of the ocular surface. Because of the association of pediatric dry eye with other conditions, a multidisciplinary approach to diagnosis and treatment is usually required. The purpose of this review is to enhance physician awareness of dry eye in children, to describe the most frequently associated conditions, and to discuss the diagnostic and therapeutic options available.