305 resultados para novel dual-slab laser
Resumo:
Multilayer CVD coatings for high speed cutting applications were designed to achieve high wear and heat resistance during machining of steel alloys. In this work the microstructure and cutting performance of these novel multilayer CVD coatings are investigated and compared with standard CVD multilayer coatings. 3D-FIB tomography is used to characterize the microstructure of the layers, especially the transition between the Ti(C,N) and the Al(2)O(3) layer. The 3D reconstruction of the surface of the Ti(C,N) layer shows the formation of protruded Ti(C,N) grains with a very particular architecture, which penetrate into the Al(2)O(3) top-layer, providing a mechanical anchoring between both layers. Cemented carbides coated with the novel CVD multilayer present reduced crater and flank wear as well as improved adherence between the Al(2)O(3) top-layer and the Ti(C,N) layer leading to a dramatic improvement of cutting performance.
Resumo:
With the aim of investigating a laser-welded dissimilar joint of TWIP and TRIP steel sheets, the microstructure was characterized by means of OM, SEM, and EBSD to differentiate the fusion zone, heat-affected zone, and the base material. OIM was used to differentiate between ferritic, bainitic, and martensitic structures. Compositions were measured by means of optical emission spectrometry and EDX to evaluate the effect of manganese segregation. Microhardness measurements and tensile tests were performed to evaluate the mechanical properties of the joint. Residual stresses and XRD phase quantification were used to characterize the weld. Grain coarsening and martensitic areas were found in the fusion zone, and they had significant effects on the mechanical properties of the weld. The heat-affected zone of the TRIP steel and the corresponding base material showed considerable differences in the microstructure and properties. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This work presents a novel dressing technique that allows the inscription of pre-configurable patterns, or textures, on the grinding wheel surface. An electro-mechanical exciter connected to the dressing tool receives synchronized signal from a control software engraving patterns on the grinding wheel. The dressing and grinding operations were evaluated using the AE mapping technique. The presented applications show the use of textured grinding wheels for better grinding process performance in conventional applications and also for the production of patterned surfaces in order to change its functional performance. The results and analysis allow a better understanding of the grinding mechanism with patterned wheels. With the application of the proposed method it was possible to inscribe different patterns on workpieces and also to increase the grinding performance in conventional applications. (C) 2010 CIRP.
Resumo:
The performance assessment as to water consumption in WC cisterns has contributed to the development of flushing system technologies, which allow smaller flushing volumes. The purpose of this work is to assess the performance of the the low water consumption requirement of WC cisterns with dual flushing system (6/3L), when compared to 6L flushing volume WC cisterns in multifamily buildings. The research methodology consisted of a case study in a multifamily residential building with submetering system, by monitoring the total water consumption and the two flushing systems using water meters installed in WC cisterns. By means of a mathematical model, a comparison of the design flowrate in the main branch was carried out considering the two types of WC cisterns. The results indicated that the water consumption in the 6L WC cistern was 20% in relation to the total domestic consumption, whereas the water consumption observed in the dual-flush WC cistern (6/3L) was 16%. The dual flushing system (6/3L) presented about 18% consumption reduction impact as compared to the 6 L system. The design flowrate values in the main branch, obtained by the mathematical model, were 0.35 L/s for systems with 6 L WC cistern and 0.34 L/s with dual-flush WC cistern (6/3 L), that is, a reduction of similar to 3%. Practical application: The knowledge of the performance in field of dual-flush WC cistern contributes to industry to improve this system and to users to aid their choice of technologies aimed at water conservation, and so assisting to the development of sustainable buildings.
Resumo:
A new, simple approach for modeling and assessing the operation and response of the multiline voltage-source controller (VSC)-based flexible ac transmission system controllers, namely the generalized interline power-flow controller (GIPFC) and the interline power-flow controller (IPFC), is presented in this paper. The model and the analysis developed are based on the converters` power balance method which makes use of the d-q orthogonal coordinates to thereafter present a direct solution for these controllers through a quadratic equation. The main constraints and limitations that such devices present while controlling the two independent ac systems considered, will also be evaluated. In order to examine and validate the steady-state model initially proposed, a phase-shift VSC-based GIPFC was also built in the Alternate Transients Program program whose results are also included in this paper. Where applicable, a comparative evaluation between the GIPFC and the IPFC is also presented.
Resumo:
Real-time viscosity measurement remains a necessity for highly automated industry. To resolve this problem, many studies have been carried out using an ultrasonic shear wave reflectance method. This method is based on the determination of the complex reflection coefficient`s magnitude and phase at the solid-liquid interface. Although magnitude is a stable quantity and its measurement is relatively simple and precise, phase measurement is a difficult task because of strong temperature dependence. A simplified method that uses only the magnitude of the reflection coefficient and that is valid under the Newtonian regimen has been proposed by some authors, but the obtained viscosity values do not match conventional viscometry measurements. In this work, a mode conversion measurement cell was used to measure glycerin viscosity as a function of temperature (15 to 25 degrees C) and corn syrup-water mixtures as a function of concentration (70 to 100 wt% of corn syrup). Tests were carried out at 1 MHz. A novel signal processing technique that calculates the reflection coefficient magnitude in a frequency band, instead of a single frequency, was studied. The effects of the bandwidth on magnitude and viscosity were analyzed and the results were compared with the values predicted by the Newtonian liquid model. The frequency band technique improved the magnitude results. The obtained viscosity values came close to those measured by the rotational viscometer with percentage errors up to 14%, whereas errors up to 96% were found for the single frequency method.
Resumo:
The paper presents the development of a mechanical actuator using a shape memory alloy with a cooling system based on the thermoelectric effect (Seebeck-Peltier effect). Such a method has the advantage of reduced weight and requires a simpler control strategy as compared to other forced cooling systems. A complete mathematical model of the actuator was derived, and an experimental prototype was implemented. Several experiments are used to validate the model and to identify all parameters. A robust and nonlinear controller, based on sliding-mode theory, was derived and implemented. Experiments were used to evaluate the actuator closed-loop performance, stability, and robustness properties. The results showed that the proposed cooling system and controller are able to improve the dynamic response of the actuator. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This work presents a comparison between laser weld (LBW) and electric resistance spot weld (ERSW) processes used for assemblies of components in a body-in-white (BIW) at a world class automotive industry. It is carried out by evaluating the mechanical strength modeled both by experimental and numerical methods. An ""Arcan"" multiaxial test was designed and manufactured in order to enable 0 degrees, 45 degrees and 90 degrees directional loadings. The welded specimens were uncoated low carbon steel sheets (S-y = 170 MPa) used currently at the automotive industry, with two different thicknesses: 0.80 and 1.20 mm. A numerical analysis was carried out using the finite element method (FEM) through LS-DYNA code. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Pipeline systems play a key role in the petroleum business. These operational systems provide connection between ports and/or oil fields and refineries (upstream), as well as between these and consumer markets (downstream). The purpose of this work is to propose a novel MINLP formulation based on a continuous time representation for the scheduling of multiproduct pipeline systems that must supply multiple consumer markets. Moreover, it also considers that the pipeline operates intermittently and that the pumping costs depend on the booster stations yield rates, which in turn may generate different flow rates. The proposed continuous time representation is compared with a previously developed discrete time representation [Rejowski, R., Jr., & Pinto, J. M. (2004). Efficient MILP formulations and valid cuts for multiproduct pipeline scheduling. Computers and Chemical Engineering, 28, 1511] in terms of solution quality and computational performance. The influence of the number of time intervals that represents the transfer operation is studied and several configurations for the booster stations are tested. Finally, the proposed formulation is applied to a larger case, in which several booster configurations with different numbers of stages are tested. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A novel setup for imaging and interferometry through reflection holography with Bi12TiPO20(BTO) sillenite photorefractive crystals is proposed. A variation of the lensless Denisiuk arrangement was developed resulting in a compact, robust and simple interferometer. A red He-Ne laser was used as light source and the holographic recording occurred by diffusion with the grating vector parallel to the crystal [0 0 1]-axis. In order to enhance the holographic image quality and reduce noise a polarizing beam splitter (PBS) was positioned at the BTO input and the crystal was tilted around the [0 0 1]-axis. This enabled the orthogonally polarized transmission and diffracted beams to be separated by the PBS, providing the holographic image only. The possibility of performing deformation and strain analysis as well as vibration measurement of small objects was demonstrated. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The increasing adoption of information systems in healthcare has led to a scenario where patient information security is more and more being regarded as a critical issue. Allowing patient information to be in jeopardy may lead to irreparable damage, physically, morally, and socially to the patient, potentially shaking the credibility of the healthcare institution. Medical images play a crucial role in such context, given their importance in diagnosis, treatment, and research. Therefore, it is vital to take measures in order to prevent tampering and determine their provenance. This demands adoption of security mechanisms to assure information integrity and authenticity. There are a number of works done in this field, based on two major approaches: use of metadata and use of watermarking. However, there still are limitations for both approaches that must be properly addressed. This paper presents a new method using cryptographic means to improve trustworthiness of medical images, providing a stronger link between the image and the information on its integrity and authenticity, without compromising image quality to the end user. Use of Digital Imaging and Communications in Medicine structures is also an advantage for ease of development and deployment.
Resumo:
The `biomimetic` approach to tissue engineering usually involves the use of a bioreactor mimicking physiological parameters whilst supplying nutrients to the developing tissue. Here we present a new heart valve bioreactor, having as its centrepiece a ventricular assist device (VAD), which exposes the cell-scaffold constructs to a wider array of mechanical forces. The pump of the VAD has two chambers: a blood and a pneumatic chamber, separated by an elastic membrane. Pulsatile air-pressure is generated by a piston-type actuator and delivered to the pneumatic chamber, ejecting the fluid in the blood chamber. Subsequently, applied vacuum to the pneumatic chamber causes the blood chamber to fill. A mechanical heart valve was placed in the VAD`s inflow position. The tissue engineered (TE) valve was placed in the outflow position. The VAD was coupled in series with a Windkessel compliance chamber, variable throttle and reservoir, connected by silicone tubings. The reservoir sat on an elevated platform, allowing adjustment of ventricular preload between 0 and 11 mmHg. To allow for sterile gaseous exchange between the circuit interior and exterior, a 0.2 mu m filter was placed at the reservoir. Pressure and flow were registered downstream of the TE valve. The circuit was filled with culture medium and fitted in a standard 5% CO(2) incubator set at 37 degrees C. Pressure and flow waveforms were similar to those obtained under physiological conditions for the pulmonary circulation. The `cardiomimetic` approach presented here represents a new perspective to conventional biomimetic approaches in TE, with potential advantages. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Witches` broom is a severe disease of Theobroma cacao L. (cacao), caused by the basidiomycete Moniliophthora perniciosa. The use of resistant cultivars is the ultimate method of control, but there are limited sources of resistance. Further, resistance from the most widely used source (`Scavina 6`) has been overcome after a few years of deployment. New sources of resistance have been intensively searched for in the Amazon basin. Here, we evaluated for witches` broom resistance, cacao accessions from various natural cacao populations originally collected in the Brazilian Amazon. Resistance of 43 families was evaluated under nursery and/or field conditions by artificial or natural infection, respectively, based on disease incidence. Screening for resistance by artificial inoculation under nursery conditions appeared to be efficient in identifying these novel resistance sources, confirmed by natural field evaluation over a nine-year period. The increase in natural field infection of `Scavina 6` was clearly demonstrated. Among the evaluated families with the least witches` broom incidence, there were accessions originally collected from distinct river basins, including the Jamari river (`CAB 0371`; `CAB 0388`; `CAB 0392`; and `CAB 0410`); Acre (`CAB 0169`); Javari (`CAB 0352`); Solimes (`CAB 0270`); and from the Purus river basin, the two most outstanding resistant accessions, `CAB 0208` and `CAB 0214`. The large genetic diversity found in cacao populations occurring at river basins from Acre and Amazonas states, Brazil, increased the chance that the selected resistant accessions would be genetically more dissimilar, and represent distinct sources of resistance to M. perniciosa from `Scavina 6`.
Resumo:
The application of airborne laser scanning (ALS) technologies in forest inventories has shown great potential to improve the efficiency of forest planning activities. Precise estimates, fast assessment and relatively low complexity can explain the good results in terms of efficiency. The evolution of GPS and inertial measurement technologies, as well as the observed lower assessment costs when these technologies are applied to large scale studies, can explain the increasing dissemination of ALS technologies. The observed good quality of results can be expressed by estimates of volumes and basal area with estimated error below the level of 8.4%, depending on the size of sampled area, the quantity of laser pulses per square meter and the number of control plots. This paper analyzes the potential of an ALS assessment to produce certain forest inventory statistics in plantations of cloned Eucalyptus spp with precision equal of superior to conventional methods. The statistics of interest in this case were: volume, basal area, mean height and dominant trees mean height. The ALS flight for data assessment covered two strips of approximately 2 by 20 Km, in which clouds of points were sampled in circular plots with a radius of 13 m. Plots were sampled in different parts of the strips to cover different stand ages. The clouds of points generated by the ALS assessment: overall height mean, standard error, five percentiles (height under which we can find 10%, 30%, 50%,70% and 90% of the ALS points above ground level in the cloud), and density of points above ground level in each percentile were calculated. The ALS statistics were used in regression models to estimate mean diameter, mean height, mean height of dominant trees, basal area and volume. Conventional forest inventory sample plots provided real data. For volume, an exploratory assessment involving different combinations of ALS statistics allowed for the definition of the most promising relationships and fitting tests based on well known forest biometric models. The models based on ALS statistics that produced the best results involved: the 30% percentile to estimate mean diameter (R(2)=0,88 and MQE%=0,0004); the 10% and 90% percentiles to estimate mean height (R(2)=0,94 and MQE%=0,0003); the 90% percentile to estimate dominant height (R(2)=0,96 and MQE%=0,0003); the 10% percentile and mean height of ALS points to estimate basal area (R(2)=0,92 and MQE%=0,0016); and, to estimate volume, age and the 30% and 90% percentiles (R(2)=0,95 MQE%=0,002). Among the tested forest biometric models, the best fits were provided by the modified Schumacher using age and the 90% percentile, modified Clutter using age, mean height of ALS points and the 70% percentile, and modified Buckman using age, mean height of ALS points and the 10% percentile.
Resumo:
The microtube is a simple and cheap emitter that was widely used throughout the world in the early days of drip irrigation. Its length can be adjusted according to the pressure distribution along the lateral line and the discharge from the microtube can be adjusted by its length. This not only counters the pressure loss due to pipe friction but also makes it suitable for undulating and hilly conditions, where pressure in the lateral line varies considerably according to the differences in elevation. This is the major problem facing the designer, i.e., emitter flow changes as the acting pressure head changes. In this study, a novel micro-sprinkler system is proposed that uses microtube as the emitter and where the length of the microtube can be varied in response to pressure changes along the lateral to give uniformity of emitter discharges. The objective of this work is to develop and validate empirical and semi-theoretical equations for the emitter hydraulics. Laboratory testing of two microtube emitters of different diameter over a range of pressures and discharges was used in the development of the equations relating pressure and discharge, and pressure and length for these emitters. The equations proposed will be used in the design of the micro-sprinkler system, to determine the length of microtube required to give the nominal discharge for any given pressure. The semi-theoretical approach underlined the importance of accurate measurements of the microtube diameter and the uncertainty in the estimation of the friction factor for these tubes.