267 resultados para human phosphorus cycle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this article is to present the main contributions of human resource management to develop sustainable organizations. The relationship between human resources and organizational sustainability, which is based on economical, social and environmental performance, involves some important aspects concerning management such as innovation, cultural diversity and the environment. The integration of items from the triple bottom line approach leads to developing a model based on a strategic and central posture of human resource management. Based on this model, propositions and recommendations for future research on this theme are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this article is to analyze the theoretical model proposed by [Jabbour CJC, Santos FCA. Relationships between human resource dimensions and environmental management in companies: proposal of a model. Journal of Cleaner Production 2008;16(1):5 1-8.] based on the data collected in four Brazilian companies. This model investigates how the phases of the environmental management system can be linked to human resource practices in order to attain continuous improvement of a company`s environmental performance. Our aim is to contribute to a field, which has little empirical evidence. Although the interaction between the phases of the environmental management system and human resource practices is recommended by the specialized literature [Daily BE Huang S. Achieving sustainability through attention to human resource factors in environmental management. International Journal of Operations and Production Management 2001:21(12):1539-52.], the results indicate that most of the theoretical assumptions could not be confirmed in these Brazilian companies. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work deals with the main contributions of human resource dimensions for the environmental management in a company. While the specialized literature concerning the technical aspects of environmental management expands, there is a gap in the bibliography: integrated approaches between human resource dimensions and environmental management. An extensive bibliographical review was undertaken in order to systematize the human resource dimensions and their contributions concerning the effectiveness of the environmental management system. A model that analyses the relationships between these dimensions and the typical phases of an environmental management system is presented, within a perspective of application for academicians and managers. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis of geomorphic system`s response to change in human and natural drivers in some areas within the Rio de la Plata basin is presented The aim is to determine whether an acceleration of geomorphic processes has taken place in recent years and, if so, to what extent it is due to natural (climate) or human (land-use) drivers Study areas of different size, socio-economic and geomorphic conditions have been selected: the Rio de la Plata estuary and three sub-basins within its watershed Sediment cores were extracted and dated ((210)Pb) to determine sedimentation rates since the end of the 19th century. Rates were compared with time series on rainfall as well as human drivers such as population, GDP, livestock load, crop area, energy consumption or cement consumption, all of them related to human capacity to disturb land surface Data on river discharge were also gathered Results obtained indicate that sedimentation rates during the last century have remained essentially constant in a remote Andean basin, whereas they show important increases in the other two, particularly one located by the Sao Paulo metropolitan area Rates in the estuary are somewhere in between It appears that there is an intensification of denudation/sedimentation processes within the basin. Rainfall remained stable or varied very slightly during the period analysed and does not seem to explain increases of sedimentation rates observed. Human drivers, particularly those more directly related to capacity to disturb land surface (GDP, energy or cement consumption) show variations that suggest human forcing is a more likely explanation for the observed change in geomorphic processes It appears that a marked increase in denudation, of a ""technological"" nature, is taking place in this basin and leading to an acceleration of sediment supply This is coherent with similar increases observed in other regions (C) 2010 Elsevier B V All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study was performed regarding the effect of the relation between fill time, volume treated per cycle, and influent concentration at different applied organic loadings on the stability and efficiency of an anaerobic sequencing batch reactor containing immobilized biomass on polyurethane foam with recirculation of the liquid phase (AnSBBR) applied to the treatment of wastewater from a personal care industry. Total cycle length of the reactor was 8 h (480 min). Fill times were 10 min in the batch operation, 4 h in the fed-batch operation, and a 10-min batch followed by a 4-h fed batch in the mixed operation. Settling time was not necessary since the biomass was immobilized and decant time was 10 min. Volume of liquid medium in the reactor was 2.5 L, whereas volume treated per cycle ranged from 0.88 to 2.5 L in accordance with fill time. Influent concentration varied from 300 to 1,425 mg COD/L, resulting in an applied volumetric organic load of 0.9 and 1.5 g COD/L.d. Recirculation flow rate was 20 L/h, and the reactor was maintained at 30 A degrees C. Values of organic matter removal efficiency of filtered effluent samples were below 71% in the batch operations and above 74% in the operations of fed batch followed by batch. Feeding wastewater during part of the operational cycle was beneficial to the system, as it resulted in indirect control over the conversion of substrate into intermediates that would negatively interfere with the biochemical reactions regarding the degradation of organic matter. As a result, the average substrate consumption increased, leading to higher organic removal efficiencies in the fed-batch operations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An assessment is made of the atmospheric emissions from the life cycle of fuel ethanol coupled with the cogeneration of electricity from sugarcane in Brazil. The total exergy loss from the most quantitative relevant atmospheric emission substances produced by the life cycle of fuel ethanol is 3.26E+05 kJ/t of C(2)H(5)OH, Compared with the chemical exergy of 1 t of ethanol (calculated as 34.56E + 06 kJ). the exergy loss from the life cycle`s atmospheric emission represents 1.11% of the product`s exergy. The activity that most contributes to atmospheric emission chemical exergy losses is the harvesting of sugarcane through the methane emitted in burning. Suggestions for improved environmental quality and greater efficiency of the life cycle of fuel ethanol with cogenerated energy are: harvesting the sugarcane without burning, renewable fuels should be used in tractors, trucks and buses instead of fossil fuel and the transportation of products and input should be logistically optimized. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the lifecycle assessment (LCA) of fuel ethanol, as 100% of the vehicle fuel, from sugarcane in Brazil. The functional unit is 10,000 km run in an urban area by a car with a 1,600-cm(3) engine running on fuel hydrated ethanol, and the resulting reference flow is 1,000 kg of ethanol. The product system includes agricultural and industrial activities, distribution, cogeneration of electricity and steam, ethanol use during car driving, and industrial by-products recycling to irrigate sugarcane fields. The use of sugarcane by the ethanol agribusiness is one of the foremost financial resources for the economy of the Brazilian rural area, which occupies extensive areas and provides far-reaching potentials for renewable fuel production. But, there are environmental impacts during the fuel ethanol lifecycle, which this paper intents to analyze, including addressing the main activities responsible for such impacts and indicating some suggestions to minimize the impacts. This study is classified as an applied quantitative research, and the technical procedure to achieve the exploratory goal is based on bibliographic revision, documental research, primary data collection, and study cases at sugarcane farms and fuel ethanol industries in the northeast of SA o pound Paulo State, Brazil. The methodological structure for this LCA study is in agreement with the International Standardization Organization, and the method used is the Environmental Design of Industrial Products. The lifecycle impact assessment (LCIA) covers the following emission-related impact categories: global warming, ozone formation, acidification, nutrient enrichment, ecotoxicity, and human toxicity. The results of the fuel ethanol LCI demonstrate that even though alcohol is considered a renewable fuel because it comes from biomass (sugarcane), it uses a high quantity and diversity of nonrenewable resources over its lifecycle. The input of renewable resources is also high mainly because of the water consumption in the industrial phases, due to the sugarcane washing process. During the lifecycle of alcohol, there is a surplus of electric energy due to the cogeneration activity. Another focus point is the quantity of emissions to the atmosphere and the diversity of the substances emitted. Harvesting is the unit process that contributes most to global warming. For photochemical ozone formation, harvesting is also the activity with the strongest contributions due to the burning in harvesting and the emissions from using diesel fuel. The acidification impact potential is mostly due to the NOx emitted by the combustion of ethanol during use, on account of the sulfuric acid use in the industrial process and because of the NOx emitted by the burning in harvesting. The main consequence of the intensive use of fertilizers to the field is the high nutrient enrichment impact potential associated with this activity. The main contributions to the ecotoxicity impact potential come from chemical applications during crop growth. The activity that presents the highest impact potential for human toxicity (HT) via air and via soil is harvesting. Via water, HT potential is high in harvesting due to lubricant use on the machines. The normalization results indicate that nutrient enrichment, acidification, and human toxicity via air and via water are the most significant impact potentials for the lifecycle of fuel ethanol. The fuel ethanol lifecycle contributes negatively to all the impact potentials analyzed: global warming, ozone formation, acidification, nutrient enrichment, ecotoxicity, and human toxicity. Concerning energy consumption, it consumes less energy than its own production largely because of the electricity cogeneration system, but this process is highly dependent on water. The main causes for the biggest impact potential indicated by the normalization is the nutrient application, the burning in harvesting and the use of diesel fuel. The recommendations for the ethanol lifecycle are: harvesting the sugarcane without burning; more environmentally benign agricultural practices; renewable fuel rather than diesel; not washing sugarcane and implementing water recycling systems during the industrial processing; and improving the system of gases emissions control during the use of ethanol in cars, mainly for NOx. Other studies on the fuel ethanol from sugarcane may analyze in more details the social aspects, the biodiversity, and the land use impact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of heteroplasmy (presence of more than one type of mitochondrial DNA in an individual) is used as a tool in human identification studies, anthropology, and most currently in studies that relate heteroplasmy with longevity. The frequency of heteroplasmy and its correlation with age has been analyzed using different tissues such as blood, muscle, heart, bone and brain and in different regions of mitochondrial DNA, but this analysis had never been performed using hair samples. In this study, samples of hair were sequenced in order to ascertain whether the presence or not of heteroplasmy varied according to age, sex and origin of haplogroup individuals. The samples were grouped by age (3 groups), gender (male and female) and haplogroup of origin (European, African and Native American), and analyzed using the chi-square statistical test (chi(2)). Based in statistical results obtained, we conclude that there is no relationship between heteroplasmy and sex, age and haplogroup origin using hair samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The construction, operation and demolition of buildings represent one of the most damaging human activities in the global environment nowadays and water use and conservation is one of the most representative environmental loads to be considered. Brazil, unlike some other countries, has not yet implemented its own body building environmental assessment. The development of an environmental assessment system requires the identification of the most important topics to be considered in each theme for each country or region, due to local environmental agenda. This article presents a summary of the main topics concerning water conservation considered in some international environmental building assessment systems and presents a proposal of topics to take into account in a Brazilian assessment system. Practical application: The civil construction industry is not only one of the biggest sectors in the economy but is also one of the greatest polluters. Along with standardisation, it is also necessary to establish measures to attract significantly higher levels in different topics related to sustainable construction. New mechanisms that allow users to recognise the difference between buildings with different sustainable performance levels need to be developed. This article will be used as a base for the development of a Brazilian system of assessment and rating for building environmental performance and sustainability in terms of water use and conservation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a framework for detection of human skin in digital images is proposed. This framework is composed of a training phase and a detection phase. A skin class model is learned during the training phase by processing several training images in a hybrid and incremental fuzzy learning scheme. This scheme combines unsupervised-and supervised-learning: unsupervised, by fuzzy clustering, to obtain clusters of color groups from training images; and supervised to select groups that represent skin color. At the end of the training phase, aggregation operators are used to provide combinations of selected groups into a skin model. In the detection phase, the learned skin model is used to detect human skin in an efficient way. Experimental results show robust and accurate human skin detection performed by the proposed framework.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Thermodynamic air-standard cycle was envisaged for Ranque-Hilsh (R-H) or Vortex Tubes to provide relevant Thermodynamic analysis and tools for setting operating limits according to the conservation laws of mass and energy, as well as the constraint of the Second Law of Thermodynamics. The study used an integral or control volume approach and resulted in establishing working equations for evaluating the performance of an R-H tube. The work proved that the coefficient of performance does not depend on the R-H tube operating mode, i.e., the same value is obtained independently if the R-H tube operates either as a heat pump or as a refrigeration device. It was also shown that the isentropic coefficient of performance displays optima values of cold and hot mass fractions for a given operating pressure ratio. Finally, the study was concluded by comparing the present analysis with some experimental data available in the literature for operating pressures ranging 2-11 atm. (C) 2010 Elsevier Ltd and IIR. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the electrical impedance tomography objectives is to estimate the electrical resistivity distribution in a domain based only on electrical potential measurements at its boundary generated by an imposed electrical current distribution into the boundary. One of the methods used in dynamic estimation is the Kalman filter. In biomedical applications, the random walk model is frequently used as evolution model and, under this conditions, poor tracking ability of the extended Kalman filter (EKF) is achieved. An analytically developed evolution model is not feasible at this moment. The paper investigates the identification of the evolution model in parallel to the EKF and updating the evolution model with certain periodicity. The evolution model transition matrix is identified using the history of the estimated resistivity distribution obtained by a sensitivity matrix based algorithm and a Newton-Raphson algorithm. To numerically identify the linear evolution model, the Ibrahim time-domain method is used. The investigation is performed by numerical simulations of a domain with time-varying resistivity and by experimental data collected from the boundary of a human chest during normal breathing. The obtained dynamic resistivity values lie within the expected values for the tissues of a human chest. The EKF results suggest that the tracking ability is significantly improved with this approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work is to develop an improved model of the human thermal system. The features included are important to solve real problems: 3D heat conduction, the use of elliptical cylinders to adequately approximate body geometry, the careful representation of tissues and important organs, and the flexibility of the computational implementation. Focus is on the passive system, which is composed by 15 cylindrical elements and it includes heat transfer between large arteries and veins. The results of thermal neutrality and transient simulations are in excellent agreement with experimental data, indicating that the model represents adequately the behavior of the human thermal system. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proposed method to analyze the composition of the cost of electricity is based on the energy conversion processes and the destruction of the exergy through the several thermodynamic processes that comprise a combined cycle power plant. The method uses thermoeconomics to evaluate and allocate the cost of exergy throughout the processes, considering costs related to inputs and investment in equipment. Although the concept may be applied to any combined cycle or cogeneration plant, this work develops only the mathematical modeling for three-pressure heat recovery steam generator (HRSG) configurations and total condensation of the produced steam. It is possible to study any n x 1 plant configuration (n sets of gas turbine and HRSGs associated to one steam turbine generator and condenser) with the developed model, assuming that every train operates identically and in steady state. The presented model was conceived from a complex configuration of a real power plant, over which variations may be applied in order to adapt it to a defined configuration under study [Borelli SJS. Method for the analysis of the composition of electricity costs in combined cycle thermoelectric power plants. Master in Energy Dissertation, Interdisciplinary Program of Energy, Institute of Eletro-technical and Energy, University of Sao Paulo, Sao Paulo, Brazil, 2005 (in Portuguese)]. The variations and adaptations include, for instance, use of reheat, supplementary firing and partial load operation. It is also possible to undertake sensitivity analysis on geometrical equipment parameters. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evaporators of sugar plants in Brazil have used carbon steel intensively because of it is, a low priced material, which possesses inferior corrosion resistance. The materials more indicated for the substitution of carbon steel are stainless steels, however they are considered expensive. The environmental and financial performances of evaporator pipes constructed with carbon steel and with types AISI 304 444 and 439 stainless steel were evaluated. For the environmental evaluation, the Life Cycle Assessment (LCA) methodology Was used and it, revealed that stainless steel is more environmentally efficient than carbon steel. The life cycle costing (LCC) technique was the tool chosen for the financial evaluation and it showed that stainless steel is a better investment option compared to carbon steel. The results also indicate that LCA and LCC methodologies must be used together Therefore, it can he seen that safer environmental products can come to be the most profitable investment options.