223 resultados para computer control
Resumo:
NUNES ALVES, M. J. N., M. R. DOS SANTOS, R. G. DIAS, C. A. AKIHO, M. C. LATERZA, M. U. P. B. RONDON, R. L. DE MORAES MOREAU, and C. E. NEGRAO. Abnormal Neurovascular Control in Anabolic Androgenic Steroids Users. Med. Sci. Sports Exerc., Vol. 42, No. 5, pp. 865-871, 2010. Purpose: Previous studies showed that anabolic androgenic steroids (AAS) increase vascular resistance and blood pressure (BP) in humans. In this study, we tested the hypotheses 1) that AAS users would have increased muscle sympathetic nerve activity (MSNA) and reduced forearm blood flow (FBF) compared with AAS nonusers and 2) that there would be an association between MSNA and 24-h BP. Methods: Twelve AAS users aged 31 +/- 2 yr (means +/- SE) and nine age-matched AAS nonusers aged 29 T 2 yr participated in the study. All individuals were involved in strength training for at least 2 yr. AAS was determined by urine test (chromatography-mass spectrometry). MSNA was directly measured by microneurography technique. FBF was measured by venous occlusion plethysmography. BP monitoring consisted of measures of BP for 24 h. Results: MSNA was significantly higher in AAS users than that in AAS nonusers (29 +/- 3 vs 20 +/- 1 bursts per minute, P = 0.01). FBF (1.92 +/- 0.17 vs 2.77 +/- 0.24 mL.min(-1).100 mL(-1), P = 0.01) and forearm vascular conductance (2.01 +/- 0.17 vs 2.86 +/- 0.31 U, P = 0.02) were significantly lower in AAS users than that in AAS nonusers. Systolic (131 +/- 4 vs 120 +/- 3 mm Hg, P = 0.001), diastolic (74 +/- 4 vs 68 +/- 3 mm Hg, P = 0.02), and mean BP (93 +/- 4 vs 86 +/- 3 mm Hg, P = 0.005) and heart rate (74 +/- 3 vs 68 +/- 3 bpm, P = 0.02) were significantly higher in AAS users when compared with AAS nonusers. Further analysis showed that there was a significant correlation between MSNA and 24-h mean BP (r = 0.75, P = 0.002). Conclusions: AAS increases MSNA and reduces muscle blood flow in young individuals. In addition, the increase in BP levels in AAS users is associated with augmented sympathetic outflow. These findings suggest that AAS increases the susceptibility for cardiovascular disease in humans.
Resumo:
Background: Restriction fragment length polymorphism (RFLP) is a common molecular assay used for genotyping, and it requires validated quality control procedures to prevent mistyping caused by impaired endonuclease activity. We have evaluated the usefulness of a plasmid-based internal control in RFLP assays. Results: Blood samples were collected from 102 individuals with acute myocardial infarction (AMI) and 108 non-AMI individuals (controls) for DNA extraction and laboratory analyses. The 1196C> T polymorphism in the toll-like receptor 4 (TLR4) gene was amplified by mismatched-polymerase chain reaction (PCR). Amplicons and pBluescript II SK-plasmid were simultaneously digested with endonuclease HincII. Fragments were separated on 2% agarose gels. Plasmid was completely digested using up to 55.2 nmL/L DNA solutions and 1 mu L PCR product. Nevertheless, plasmid DNA with 41.4 nM or higher concentrations was incompletely digested in the presence of 7 mL PCR product. In standardized conditions, TLR4 1196C> T variant was accurately genotyped. TLR4 1196T allele frequency was similar between AMI (3.1%) and controls (2.0%, p = 0.948). TLR4 SNP was not associated with AMI in this sample population. In conclusion, the plasmid-based control is a useful approach to prevent mistyping in RFLP assays, and it is validate for genetic association studies such as TLR4 1196C> T.
Resumo:
Previous work demonstrated that a mixture of NH(4)Cl and KNO(3) as nitrogen source was beneficial to fed-batch Arthrospira (Spirulina) platensis cultivation, in terms of either lower costs or higher cell concentration. On the basis of those results, this study focused on the use of a cheaper nitrogen source mixture, namely (NH(4))(2)SO(4) plus NaNO(3), varying the ammonium feeding time (T = 7-15 days), either controlling the pH by CO(2) addition or not. A. platensis was cultivated in mini-tanks at 30 degrees C, 156 mu mol photons m(-2) s(-1), and starting cell concentration of 400 mg L(-1), on a modified Schlosser medium. T = 13 days under pH control were selected as optimum conditions, ensuring the best results in terms of biomass production (maximum cell concentration of 2911 mg L(-1), cell productivity of 179 mg L(-1) d(-1) and specific growth rate of 0.77 d(-1)) and satisfactory protein and lipid contents (around 30% each). (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Ethylene oxide (EO) is used to sterilize Oxygenator and Tubing applied to heart surgery. Residual levels of EO and its derivatives, ethylene chlorohydrin (ECH) and ethylene glycol (EG), may be hazardous to the patients. Therefore, it must be removed by the aeration process. This study aimed to estimate the minimum aeration time for these devices to attain safe limits for use (avoiding excessive aeration time) and to evaluate the Green Fluorescent Protein (GFP) as a biosensor capable of best indicating the distribution and penetration of EO gas throughout the sterilization chamber. Sterilization cycles of 2, 4, and 8 h were monitored by Bacillus atrophaeus ATCC 9372 as a biological indicator (131) and by the GFP. Residual levels of EO, ECH, and EG were determined by gas chromatography (GC), and the residual dissipation was studied. Safe limits were reached right after the sterilization process for Oxygenator and after 204 h of aeration for Tubing. In the 2 h cycle, the GFP concentration decreased from 4.8 (+/- 3.2)% to 7.5 (+/- 2.5)%. For the 4 h cycle, the GFP concentration decreased from 17.4 (+/- 3.0)% to 21.5 (+/- 6.8)%, and in the 8 h cycle, it decreased from 22.5 (+/- 3.2)% to 23.9 (+/- 3.9)%. This finding showed the potentiality for GFP applications as an EO biosensor. (C) 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 9113: 626-630, 2009
Resumo:
A method was optimized for the analysis of omeprazole (OMZ) by ultra-high speed LC with diode array detection using a monolithic Chromolith Fast Gradient RP 18 endcapped column (50 x 2.0 mm id). The analyses were performed at 30 degrees C using a mobile phase consisting of 0.15% (v/v) trifluoroacetic acid (TFA) in water (solvent A) and 0.15% (v/v) TFA in acetonitrile (solvent B) under a linear gradient of 5 to 90% B in 1 min at a flow rate of 1.0 mL/min and detection at 220 nm. Under these conditions, OMZ retention time was approximately 0.74 min. Validation parameters, such as selectivity, linearity, precision, accuracy, and robustness, showed results within the acceptable criteria. The method developed was successfully applied to OMZ enteric-coated pellets, showing that this assay can be used in the pharmaceutical industry for routine QC analysis. Moreover, the analytical conditions established allow for the simultaneous analysis of OMZ metabolites, 5-hydroxyomeprazole and omeprazole sulfone, in the same run, showing that this method can be extended to other matrixes with adequate procedures for sample preparation.
Resumo:
Objectives In the present study we investigated the anti nociceptive, anti-inflammatory and antipyretic effects of 7-hydroxycoumarin (7-HC) in animal models. Methods The effects of oral 7-HC were tested against acetic acid-induced writhing, formalin test, tail flick test, complete Freund`s adjuvant (CFA)-induced hypemociception, carrageenan-induced paw oedema, lipopolysaccharide-induced fever and the rota rod test. Key findings 7-HC (3-60 mg/kg) produced a dose-related antinociception against acetic acid-induced writhing in mice and in the formalin test. In contrast, treatment with 7-HC did not prevent thermal nociception in the tail flick test. A single treatment with 7-HC, 60 mg/kg, produced a long-lasting antinociceptive effect against CFA-induced hypernociception, a chronic inflammatory pain stimulus. Notably, at 60 mg/kg per day over 4 days the administration of 7-HC produced a continuous antinociceptive effect against CFA-induced hypernociception. 7-HC (30-120 mg/kg) produced anti-inflammatory and antipyretic effects against carrageenan-induced inflammation and lipopolysaccharide-induced fever, respectively. Moreover, 7-HC was found to be safe with respect to ulcer induction. In the rota rod test, 7-HC-treated mice did not show any motor performance alterations. Conclusions The prolonged antinociceptive and anti-inflammatory effects of 7-HC, in association with its low ulcerogenic activity, indicate that this molecule might be a good candidate for development of new drugs for the control of chronic inflammatory pain and fever.
Resumo:
In the protein folding problem, solvent-mediated forces are commonly represented by intra-chain pairwise contact energy. Although this approximation has proven to be useful in several circumstances, it is limited in some other aspects of the problem. Here we show that it is possible to achieve two models to represent the chain-solvent system. one of them with implicit and other with explicit solvent, such that both reproduce the same thermodynamic results. Firstly, lattice models treated by analytical methods, were used to show that the implicit and explicitly representation of solvent effects can be energetically equivalent only if local solvent properties are time and spatially invariant. Following, applying the same reasoning Used for the lattice models, two inter-consistent Monte Carlo off-lattice models for implicit and explicit solvent are constructed, being that now in the latter the solvent properties are allowed to fluctuate. Then, it is shown that the chain configurational evolution as well as the globule equilibrium conformation are significantly distinct for implicit and explicit solvent systems. Actually, strongly contrasting with the implicit solvent version, the explicit solvent model predicts: (i) a malleable globule, in agreement with the estimated large protein-volume fluctuations; (ii) thermal conformational stability, resembling the conformational hear resistance of globular proteins, in which radii of gyration are practically insensitive to thermal effects over a relatively wide range of temperatures; and (iii) smaller radii of gyration at higher temperatures, indicating that the chain conformational entropy in the unfolded state is significantly smaller than that estimated from random coil configurations. Finally, we comment on the meaning of these results with respect to the understanding of the folding process. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to define the immunoregulatory role of prostaglandins in a mouse model of Strongyloides venezuelensis infection. Strongyloides venezuelensis induced an increase of eosinophils and mononuclear cells in the blood, peritoneal cavity fluid, and bronchoalveolar lavage fluid. Treatment with the dual cyclooxygenase (COX-1/-2) inhibitors indomethacin and ibuprofen, and the COX-2-selective inhibitor celecoxib partially blocked these cellular responses and was associated with enhanced numbers of infective larvae in the lung and adult worms in the duodenum. However, the drugs did not interfere with worm fertility. Cyclooxygenase inhibitors also inhibited the production of the T-helper type 2 (Th2) mediators IL-5, IgG1, and IgE, while indomethacin alone also inhibited IL-4, IL-10, and IgG2a. Cyclooxygenase inhibitors tended to enhance the Th1 mediators IL-12 and IFN-gamma. This shift away from Th2 immunity in cyclooxygenase inhibitor-treated mice correlated with reduced prostaglandin E(2) (PGE(2)) production in infected duodenal tissue. As PGE(2) is a well-characterized driver of Th2 immunity, we speculate that reduced production of this lipid might be involved in the shift toward a Th1 phenotype, favoring parasitism by S. venezuelensis. These findings provide new evidence that cyclooxygenase-derived lipids play a role in regulating host defenses against Strongyloides, and support the exploration of eicosanoid signaling for identifying novel preventive and therapeutic modalities against these infections.
Resumo:
Phospholipases A(2) (PLA(2)) are enzymes commonly found in snake venoms from Viperidae and Elaphidae families, which are major components thereof. Many plants are used in traditional medicine its active agents against various effects induced by snakebite. This article presents the PLA(2) BthTX-I structure prediction based on homology modeling. In addition, we have performed virtual screening in a large database yielding a set of potential bioactive inhibitors. A flexible docking program was used to investigate the interactions between the receptor and the new ligands. We have performed molecular interaction fields (MIFs) calculations with the phospholipase model. Results confirm the important role of Lys49 for binding ligands and suggest three additional residues as well. We have proposed a theoretically nontoxic, drug-like, and potential novel BthTX-I inhibitor. These calculations have been used to guide the design of novel phospholipase inhibitors as potential lead compounds that may be optimized for future treatment of snakebite victims as well as other human diseases in which PLA(2) enzymes are involved.
Resumo:
Mast Cells (MCs) express toll-like receptor 2 (TLR2), a receptor known to be triggered by several major mycobacterial ligands and involved in resistance against Mycobacterium tuberculosis (MTB) infection. This study investigated whether adoptive transfer of TLR2 positive MCs (TLR2(+/+)) corrects the increased susceptibility of TLR2(-/-) mice to MTB infection. TLR2(-/-) mice displayed increased mycobacterial burden, diminished myeloid cell recruitment and proinflammatory cytokine production accompanied by defective granuloma formation. The reconstitution of these mice with TLR2(+/+) MCs, but not TLR2(-/-), confers better control of the infection, promotes the normalization of myeloid cell recruitment associated with reestablishment of the granuloma formation. In addition, adoptive transfer of TLR2(+/+) MC to TLR2(-/-) mice resulted in regulation of the pulmonary levels of IL-beta, IL-6, TNF-alpha, enhanced Th1 response and activated CD8(+) T cell homing to the lungs. Our results suggest that activation of MCs via TLR2 is required to compensate the defect in protective immunity and inability of TLR2(-/-) mice to control MTB infection. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
Prostaglandins (PGs) and leukotrienes (LTs) are produced in Mycobacterium tuberculosis (Mtb)-infected lungs and have immune suppressive and protective effects, respectively. Considering that both of these mediators are produced during mycobacterial infection, we investigated the specific and relative biological importance of each in regulating host response in experimental tuberculosis. Administration of celecoxib, which was found to reduce lung levels of PGE(2) and increase LTB(4), enhanced the 60-day survival of Mtb-infected mice in 14%. However administration of MK-886, which reduced levels of LTB(4) but did not enhance PGE(2), reduced 60-day survival from 86% to 43% in Mtb-infected mice, and increased lung bacterial burden. MK-886 plus celecoxib reduced survival to a lesser extent than MK-886 alone. MK-886- and MK-886 plus celecoxib-treated animals exhibited reduced levels of the protective interleukin-12 and gamma-interferon. Our findings indicate that in this model, the protective effect of LTs dominates over the suppressive effect of PGs. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Pharmaceuticals can exist in many solid forms, which can have different physical and chemical properties. These solid forms include polymorphs, solvates, amorphous, and hydrates. Particularly, hydration process can be quite common since pharmaceutical solids can be in contact with water during manufacturing process and can also be exposed to water during storage. In the present work, it is proved that NQR technique is capable of detecting different hydrated forms not only in the pure raw material but also in the final product (tablets), being in this way a useful technique for quality control. This technique was also used to study the dehydration process from pentahydrate to trihydrate.
Resumo:
We have used various computational methodologies including molecular dynamics, density functional theory, virtual screening, ADMET predictions and molecular interaction field studies to design and analyze four novel potential inhibitors of farnesyltransferase (FTase). Evaluation of two proposals regarding their drug potential as well as lead compounds have indicated them as novel promising FTase inhibitors, with theoretically interesting pharmacotherapeutic profiles, when Compared to the very active and most cited FTase inhibitors that have activity data reported, which are launched drugs or compounds in clinical tests. One of our two proposals appears to be a more promising drug candidate and FTase inhibitor, but both derivative molecules indicate potentially very good pharmacotherapeutic profiles in comparison with Tipifarnib and Lonafarnib, two reference pharmaceuticals. Two other proposals have been selected with virtual screening approaches and investigated by LIS, which suggest novel and alternatives scaffolds to design future potential FTase inhibitors. Such compounds can be explored as promising molecules to initiate a research protocol in order to discover novel anticancer drug candidates targeting farnesyltransferase, in the fight against cancer. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Alcohols and acids can be switched to produce ethers or esters by varying the alcohol to catalyst mol ratio, in a new etherification and esterification method using NbCl5/Al2O3 catalyst under ""solvent free"" conditions and promoted by MW (microwave) irradiation. A ""two sites"" mechanism for the reaction is proposed, in an attempt to clarify the tendency of the catalyst to be dependent on the alcohol alone during the esterification process. (c) 2008 Elsevier B.V. All rights reserved.