138 resultados para Virus Integration
Resumo:
Objective: Human T-cell lymphotropic virus type 1 (HTLV-1) was the first human retrovirus discovered and its pathogenesis is related to T cells infection. This study aimed to verify the presence of oral manifestations in a Brazilian population of patients who was seropositive for HTLV, and identify risk factors for oral manifestations. Subjects and methods: An assessment was made of 139 patients at the Emilio Ribas Institute of Infectious Diseases. Results: A total of 112 (80.5%) patients were HTLV-1, 26 (18.7%) were HTLV-2+. About 35.2% of patients had myelopathy/tropical spastic paraparesis (HAM/TSP), with 48 of them being HTLV-1+ and one patient was seropositive for HTLV-1 and -2. The most common oral manifestations were: xerostomia (26.8%), candidiasis (20.8%), fissured tongue (17.9%), and loss of tongue papillae (10.0%). A multivariate logistic regression analysis showed that HAM/TSP is an independent risk factor for xerostomia (P = 0.02). The patients who were HAM/TSP+ were three times more likely to develop xerostomia when compared with patients without HAM/TSP (odds ratio = 2.69, 95% confidence interval = 1.17-6.17). Conclusion: Despite the fact that the findings of this study suggest a relationship between xerostomia and HAM/TSP, more studies should be developed to show what the association would be between xerostomia presented by HTLV patients and pathogenesis of the virus.
Resumo:
The objective of the present study was to assess the influence of decortication of the posterior elements of the vertebra (recipient bed) and the nature of the bone graft (cortical or cancellous bone) on graft integration and bone, cartilage and fiber neoformation in the interface between the vertebral recipient bed and the bone graft. Seventy-two male Wistar rats were divided into four experimental groups according to the presence or absence of decortication of the posterior vertebral elements and the use of a cortical or cancellous bone graft. Group I-the posterior elements were decorticated and cancellous bone used. Group II-the posterior elements were decorticated and cortical graft was used. Group III-the posterior elements were not decorticated and cancellous graft was used. Group IV-the posterior elements were not decorticated and cortical graft was used. The animals were killed 3, 6 and 9 weeks after surgery and the interface between the posterior elements and the bone graft was subjected to histomorphometric evaluation. Mean percent neoformed bone was 40.8% in group I (decortication and cancellous graft), 39.13% in group II (decortication and cortical graft), 6.13% in group III (non-decorticated and cancellous graft), and 9.27% in group IV (non-decorticated and cortical graft) for animals killed at 3 weeks (P = 0.0005). For animals killed at 6 weeks, the mean percent was 38.53% for group I, 40.40% for group II, 10.27% for group III, and 7.6% for group IV (P = 0.0005), and for animals killed at 9 weeks, the mean was 25.93% for group I, 30.6% for group II, 16.4% for group III, and 18.73% for group IV (P = 0.0026). The mean percent neoformed cartilage tissue was 8.36% for group I, 7.46% for group II, 11.1% for group III, and 9.13% for group IV for the animals killed at 3 weeks (P = 0.6544); 6.6% for group I, 8.07% for group, 7.47% for group III and 6.13% for group IV (P = 0.4889) for animals killed at 6 weeks, and 3.13% for group I, 4.06% for group II, 10.53% for group III and 12.07% for group IV (P = 0.0006) for animals killed at 9 weeks. Mean percent neoformed fibrous tissue was 11% for group I, 6.13% for group II, 26.27% for group III and 21.87% for group IV for animals killed at 3 weeks (P = 0.0008); 7.67% for group I, 7.1% for group II, 9.8% for group III and 10.4% for group IV (P = 0.7880) for animals killed at 6 weeks, and 3.73% for group I, 4.4% for group II, 6.67% for group III and 6.8% for group IV (P = 0.0214) for animals killed at 9 weeks. The statistically significant differences in percent tissue formation were related to decortication of the posterior elements. The use of a cortical or cancellous graft did not influence tissue neoformation. Ossification in the interface of the recipient graft bed was of the intramembranous type in the decorticated animals and endochondral type in the non-decorticated animals.