161 resultados para Trigeminal main sensory nucleus
Resumo:
Aims: Many fundamental pharmacological studies in pain and inflammation have been performed on rats. However, the pharmacological findings were generally not extended to other species in order to increase their predictive therapeutic value. We studied acute and chronic inflammatory nociceptive sensitisation of mouse hind paws by prostaglandin E(2) (PGE(2)) or dopamine (DA), as previously described in rats. We also investigated the participation of the signalling pathways in acute and persistent sensitisation. Main methods: Mechanical sensitisation (hypernociception) induced by intraplantar administrations of PGE(2) or DA was evaluated with an electronic pressure meter. The signalling pathways were pharmacologically investigated with the pre-administration of adenylyl cyclase (AC), cAMP-dependent protein kinase (PKA), protein kinase C epsilon (PKC epsilon), and the extracellular signal-related kinase (ERK) inhibitors. Key findings: Single or 14 days of successive intraplantar injections of PGE(2) or DA-induced acute and persistent hypernociception (lasting for more than 30 days), respectively. The involvement of AC, PKA or PKC epsilon was observed in the acute hypernociception induced by PGE(2), while PKA or PKC epsilon were continuously activated during the period of persistent hypernociception. The acute hypernociception induced by DA involves activation of ERK, PKC epsilon, AC or PKA, while persistent hypernociception implicated ERK activation, but not PKA, PKC epsilon or AC. Significance: In mice, acute and persistent paw sensitisation involves the different activation of kinases, as previously described for rats. This study opens the possibility of comparing pharmacological approaches in both species to further understand acute and chronic inflammatory sensitisation, and possibly associated genetic manipulations. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The dorsal periaqueductal gray area (dPAG) is involved in cardiovascular modulation. In a previous study, we reported that noradrenaline (NA) microinjection into the dPAG of rats caused pressor response that was mediated by vasopressin release. Vasopressin is synthesized by magnocellular neurons in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. In the present study, we verified which nuclei mediated the cardiovascular response to NA as well as the existence of direct neural projection from the dPAG to hypothalamic nuclei. Then, we studied the effect of treating either PVN or SON with the nonselective synaptic blocker cobalt chloride (1 mM) on the cardiovascular response to NA (15 nmol) microinjection into dPAG. Attempting to identify neural projections from dPAG to hypothalamic nuclei, we microinjected the neuronal tracer biotinylated-dextran-amine (BDA) into the dPAG and searched varicosity-containing nerve terminals in the PVN and SON. Unilateral cobalt-induced inhibition of synapses in the SON did not affect the cardiovascular response to NA. However, unilateral inhibition of PVN significantly reduced the pressor response to NA. Moreover, cobalt-induced inhibition of synapses in both PVN blocked the pressor response caused by NA microinjected into the dPAG. Microinjection of BDA into the dPAG evidenced presence of varicosity-containing neuronal fibers in PVN but not in SON. The results from cobalt treatment indicated that synapses in PVN mediate the vasopressin-induced pressor response caused by NA microinjection into the dPAG. In addition, the neuroanatomical results from BDA microinjection into the dPAG pointed out the existence of direct neural projections from the dPAG site to the PVN. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The lateral part of intermediate layer of superior colliculus (SCI) is a critical substrate for successful predation by rats. Hunting-evoked expression of the activity marker Fos is concentrated in SCI while prey capture in rats with NMDA lesions in SCI is impaired. Particularly affected are rapid orienting and stereotyped sequences of actions associated with predation of fast moving prey. Such deficits are consistent with the view that the deep layers of SC are important for sensory guidance of movement. Although much of the relevant evidence involves visual control of movement, less is known about movement guidance by somatosensory input from vibrissae. Indeed, our impression is that prey contact with whiskers is a likely stimulus to trigger predation. Moreover, SCI receives whisker and orofacial somatosensory information directly from trigeminal complex, and indirectly from zona incerta, parvicelular reticular formation and somatosensory barrel cortex. To better understand sensory guidance of predation by vibrissal information we investigated prey capture by rats after whisker removal and the role of superior colliculus (SC) by comparing Fos expression after hunting with and without whiskers. Rats were allowed to hunt cockroaches, after which their whiskers were removed. Two days later they were allowed to hunt cockroaches again. Without whiskers the rats were less able to retain the cockroaches after capture and less able to pursue them in the event of the cockroach escaping. The predatory behaviour of rats with re-grown whiskers returned to normal. In parallel, Fos expression in SCI induced by predation was significantly reduced in whiskerless animals. We conclude that whiskers contribute to the efficiency of rat prey capture and that the loss of vibrissal input to SCI, as reflected by reduced Fos expression, could play a critical role in predatory deficits of whiskerless rats. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
In the present study we evaluated the role of purinergic mechanisms in the PVN on the tonic modulation of the autonomic function to the cardiovascular system as well on the cardiovascular responses to peripheral chemoreflex activation in awake rats Guide-cannulae were bilaterally Implanted in the direction of the PVN of male Wistar rats Femoral artery and vein were catheterized one day before the experiments Chemoreflex was activated with KCN (30 mu g/0 05 ml iv) before and after microinjections of P2 receptors antagonist into the PVN Microinjection of PPADS a non selective P2X antagonist Into the PVN (n = 6) produced a significant increase in the baseline MAP (99 +/- 2 vs 112 +/- 3 mmHg) and HR (332 +/- 8 vs 375 +/- 8 bpm) but had no effect on the pressor and bradycardic responses to chemoreflex activation Intravenous injection of vasopres in receptors antagonist after microinjection of PPADS into the PVN produced no effect on the increased baseline MAP Simultaneous microinjection of PPADS and KYN into the PVN (n=6) had no effect in the baseline MAP HR or in the pressor and bradycardic responses to chemoreflex activation We conclude that P2 purinoceptors in the PVN are involved in the modulation of baseline autonomic function to the cardiovascular system but not in the cardiovascular responses to chemoreflex activation in awake rats (C) 2010 Elsevier B V All rights reserved
Resumo:
arginine-vasopressin in the parvocellular neurons of the hypothalamic paraventricular nucleus is known to play an important role in the control of the hypothalamo-pituitary-adrenal axis. In the present study, we verify plasma corticosterone levels, the distribution of glucocorticoid receptor- and arginine-vasopressin-positive neurons, and the co-localization of both glucocorticoid receptors and arginine-vasopressin in neurons in the anterior and medial parvocellular subdivisions of the paraventricular nucleus after manipulations of the hypothalamus-pituitary-adrenal axis. Normal, sham surgery, and adrenalectomized male rats were subjected to intraperitoneal injections of saline or dexamethasone to measure plasma corticosterone levels by a radioimmunoassay. We also examined arginine-vasopressin and glucocorticoid receptor immunofluorescence in sections from the paraventricular nucleus. Our results showed that the immunoreactivity of arginine-vasopressin neurons increased in the anterior parvocellular subdivision and decreased in the medial parvocellular subdivision from adrenalectomized rats treated with dexamethasone. On the other hand, we showed that the immunoreactivity of glucocorticoid receptors increased in the anterior and medial parvocellular subdivisions of these same animals. However, the immunoreactivity of glucocorticoid receptors is higher in the medial parvocellular than anterior parvocellular subdivision. The co-localization of arginine-vasopressin and glucocorticoid receptors was found only in the medial parvocellular subdivision. These findings indicate that glucocorticoids have direct actions on arginine-vasopressin-positive neurons in the medial parvocellular but not anterior parvocellular subdivision. There is a differentiated pattern of arginine-vasopressin-positive neuron expression between the anterior and medial parvocellular subdivisions. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Tonic immobility (TI) is an innate defensive behavior characterized by a state of physical inactivity and diminished responsiveness to environmental stimuli. Behavioral adaptations to changes in the external and internal milieu involve complex neuronal network activity and a large number of chemical neurotransmitters. The TI response is thought to be influenced by serotonin (5-HT) activity in the central nervous system (CNS) of vertebrates, but the neuronal groups involved in the mechanisms underlying this behavior are poorly understood. Owing to its extensive afferents and efferents, the dorsal raphe nucleus (DRN) has been implicated in a great variety of physiological and behavioral functions. in the current study, we investigated the influence of serotonergic 5-HT(1A) and 5-HT(2) receptor activity within the DRN on the modulation of TI behavior in the guinea pig. Microinjection of a 5-HT(1A) receptor agonist (8-OH-DPAT, 0.01 and 0.1 mu g) decreased TI behavior, an effect blocked by pretreatment with WAY-100635 (0.033 mu g), a 5-HT(1A) antagonist. In contrast, activation of 5-HT(2) receptors within the DRN (alpha-methyl-5-HT, 0.5 mu g) increased the TI duration, and this effect could be reversed by pretreatment with an ineffective dose (0.01 mu g) of ketanserine. Since the 5-HT(1A) and 5-HT(2) agonists decreased and increased, respectively, the duration of TI, different serotonin receptor subtypes may play distinct roles in the modulation of TI in the guinea pig. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Despite the well-established sympathoexcitation evoked by chemoreflex activation, the specific sub-regions of the CNS underlying such sympathetic responses remain to be fully characterized. In the present study we examined the effects of intermittent chemoreflex activation in awake rats on Fos-immunoreactivity (Fos-ir) in various subnuclei of the paraventricular nucleus of the hypothalamus (PVN), as well as in identified neurosecretory preautonomic PVN neurons. In response to intermittent chemoreflex activation, a significant increase in the number of Fos-ir cells was found in autonomic-related PVN subnuclei, including the posterior parvocellular, ventromedial parvocellular and dorsal-cap, but not in the neurosecretory magnocellular-containing lateral magnocellular subnucleus. No changes in Fos-ir following chemoreflex activation were observed in the anterior PVN subnucleus. Experiments combining Fos immunohistochemistry and neuronal tract tracing techniques showed a significant increase in Fos-ir in rostral ventrolateral medulla (RVLM)-projecting (PVN-RVLM), but not in nucleus of solitarii tract (NTS)-projecting PVN neurons. In summary, our results support the involvement of the PVN in the central neuronal circuitry activated in response to chemoreflex activation, and indicate that PVN-RVLM neurons constitute a neuronal substrate contributing to the sympathoexcitatory component of the chemoreflex. Published by Elsevier Ltd on behalf of IBRO.
Resumo:
Microinjection of the cholinergic agonist carbachol into the bed nucleus of the stria terminalis (BST) has been reported to cause pressor response in unanesthetized rats, which was shown to be mediated by an acute release of vasopressin into the systemic circulation and followed by baroreflex-mediated bradycardia. In the present study, we tested the possible involvement of the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei in the pressor response evoked by carbachol microinjection into the BST of unanesthetized rats. For this, cardiovascular responses following carbachol (1 nmol/100 nL) microinjection into the BST were studied before and after PVN or SON pretreatment, either ipsilateral or contralateral in relation to BST microinjection site, with the nonselective neurotransmission blocker cobalt chloride (CoCl(2), 1 mM/100 nL). Carbachol microinjection into the BST evoked pressor response. Moreover, BST treatment with carbachol significantly increased plasma vasopressin levels, thus confirming previous evidences that carbachol microinjection into the BST evokes pressor response due to vasopressin release into the circulation. SON pretreatment with CoCl(2), either ipsilateral or contralateral in relation to BST microinjection site, inhibited the pressor response to carbachol microinjection into the BST. However, CoCl(2) microinjection into the ipsilateral or contralateral PVN did not affect carbachol-evoked pressor response. In conclusion, our results suggest that pressor response to carbachol microinjection into the BST is mediated by SON magnocellular neurons, without significant involvement of those in the PVN. The results also indicate that responses to carbachol microinjection into the BST are mediated by a neural pathway that depends on the activation of both ipsilateral and contralateral SON. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Cannabinoids have been shown to modulate central autonomic regulation and baroreflex control of blood pressure. Both CB1 and CB2 cannabinoid receptors have been described in the nucleus tractus solitarius (NTS), which receives direct afferent projections of cardiovascular reflexes. in the present study we evaluated the effects of WIN 55212-2 (WIN), a cannabinoid agonist, on fast neurotransmission in the NTS. We recorded spontaneous post-synaptic currents using the whole-cell configuration in NTS cells in brainstem slices from young rats (25-30 days old). Application of 5 mu M WIN inhibited the frequency of both glutamatergic and GABAergic sPSCs, without affecting their amplitudes. Effects of WIN were not blocked by application of the CB1 antagonist AM251, the CB2 antagonist AM630 or the varmiloid receptor TRPV1 antagonist AMG9810, suggesting that the effect of WIN is via a non-CB1 non-CB2 receptor. Neither the CB1/CB2 agonist HU210 nor the CB1 agonist ACPA affected the frequency of sPSCs. We conclude WIN inhibits the neurotransmission in the NTS of young rats via a receptor distinct from CB1 or CB2. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Delta-9-tetrahydrocannabinol (Delta-9-THC) and Cannabidiol (CBD), the two main ingredients of the Cannabis sativa plant have distinct symptomatic and behavioral effects. We used functional magnetic resonance imaging (fMRI) in healthy volunteers to examine whether Delta-9-THC and CBD had opposite effects on regional brain function. We then assessed whether pretreatment with CBD can prevent the acute psychotic symptoms induced by Delta-9-THC. Fifteen healthy men with minimal earlier exposure to cannabis were scanned while performing a verbal memory task, a response inhibition task, a sensory processing task, and when viewing fearful faces. Subjects were scanned on three occasions, each preceded by oral administration of Delta-9-THC, CBD, or placebo. BOLD responses were measured using fMRI. In a second experiment, six healthy volunteers were administered Delta-9-THC intravenously on two occasions, after placebo or CBD pretreatment to examine whether CBD could block the psychotic symptoms induced by Delta-9-THC. Delta-9-THC and CBD had opposite effects on activation relative to placebo in the striatum during verbal recall, in the hippocampus during the response inhibition task, in the amygdala when subjects viewed fearful faces, in the superior temporal cortex when subjects listened to speech, and in the occipital cortex during visual processing. In the second experiment, pretreatment with CBD prevented the acute induction of psychotic symptoms by Delta-9-tetrahydrocannabinol. Delta-9-THC and CBD can have opposite effects on regional brain function, which may underlie their different symptomatic and behavioral effects, and CBD`s ability to block the psychotogenic effects of Delta-9-THC. Neuropsychopharmacology (2010) 35, 764-774; doi:10.1038/npp.2009.184; published online 18 November 2009
Dorsal root ganglionectomy for the diagnosis of sensory neuropathies. Surgical technique and results
Resumo:
Background: Inflammatory diseases stand out among sensory neuronopathies because, in their active phase, they can be treated with immunosuppressive agents. Immunosuppressive therapy may present severe adverse effects and requires previous inflammatory activity confirmation. Sensory neuronopathies are diagnosed based on clinical and EMG findings. Diagnostic confirmation and identification of inflammatory activity are based on sensory ganglion histopathological examination. We describe the surgical technique used for dorsal root ganglionectomy in patients with clinical/EMG diagnosis of sensory neuronopathies. Methods: The sensory ganglion was obtained from 15 patients through a small T7-T8 hemilaminectomy and foraminotomy to expose the C7 root from its origin to the spinal nerve bifurcation. In 6 patients, the dural cuff supposed to contain the ganglion was resected en bloc; and in 9 patients, the ganglion was obtained through a longitudinal incision of the dural cuff and microsurgical dissection from the ventral and dorsal roots and radicular arteries. All ganglia were histopathologically examined. Results: No ganglion was found in the dural cuff in 2 patients submitted to en bloc removal, and the ganglion was removed in all patients who underwent microsurgical dissection. All but 2 patients that had ganglion examination presented a neuronopathy of nerve cell loss, 3 with mononuclear inflammatory infiltrate. These patients underwent immunosuppressive therapy, and 2 of them presented clinical improvement. No surgical complications were observed. Conclusions: Microsurgical dorsal root ganglionectomy for diagnosing inflammatory sensory ganglionopathies was effective and safe. Although safe, en bloc resection of the proximal dural cuff was not effective for this purpose. (c) 2008 Published by Elsevier Inc.
Resumo:
The interaction of purinergic and nitrergic mechanisms was evaluated in the caudal nucleus tractus solitarii (cNTS) using awake animals and brainstem slices. In awake animals, ATP (1.25 nmol/50 nL) was microinjected into the cNTS before and after the microinjection of a selective neuronal nitric oxide synthase (nNOS) inhibitor N-propyl-L-arginine (NPLA, 3 pmoles/50 nL, n=8) or vehicle (saline, n=4), and cardiovascular and ventilatory parameters were recorded. In brainstem slices from a distinct group of rats, the effects of ATP on the NO concentration in the cNTS using the fluorescent dye DAF-2 DA were evaluated. For this purpose brainstem slices (150 pm) containing the cNTS were pre-incubated with ATP (500 mu M; n=8) before and during DAF-2 DA loading. Microinjection of ATP into the cNTS increases the arterial pressure (AP), respiratory frequency (f(R)) and minute ventilation (V(E)), which were significantly reduced by pretreatment with N-PLA, a selective nNOS inhibitor (AP: 39 +/- 3 vs 16 +/- 14 mm Hg; f(R): 75 +/- 14 vs 4 +/- 3 cpm; V(E): 909 159 vs 77 39 mL kg(-1) m(-1)). The effects of ATP in the cNTS were not affected by microinjection of saline. ATP significantly increased the NO fluorescence in the cNTS (62 +/- 7 vs 101 +/- 10 AU). The data show that in the cNTS: a) the NO production is increased by ATP; b) NO formation by nNOS is involved in the cardiovascular and ventilatory responses to microinjection of ATP. Taken together, these data suggest an interaction of purinergic and nitrergic mechanisms in the cNTS. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Rat airways exposure to Staphylococcal enterotoxin A (SEA) and B (SEB) induces marked neutrophil influx. Since sensory neuropeptides play important roles in cell infiltration, in this study we have investigated its contribution in triggering SEA- and SEB-induced pulmonary neutrophil infiltration. Male Wistar rats were exposed intratracheally with SEA (3 ng/trachea) or SEB (250 ng/trachea). Animals received different in vivo pretreatments, after which the neutrophil counts and levels of substance P and IL-1 in bronchoalveolar lavage fluid were evaluated. Alveolar macrophages and peritoneal mast cells were incubated with SEA and SEB to determine the IL-1 and TNF-alpha levels. Capsaicin pretreatment significantly reduced SEA- and SEB-induced neutrophil influx in bronchoalveolar lavage fluid, but this treatment was more effective to reduce SEA responses. Treatments with SR140333 (tachykinin NK(1) receptor antagonist) and SR48968 (tachykinin NK(2) receptor antagonist) decreased SEA-induced neutrophil influx, whereas SEB-induced responses were inhibited by SR140333 only. Cyproheptadine (histamine/5-hydroxytriptamine receptor antagonist) and MD 7222 (5-HT(3) receptor antagonist) reduced SEA- and SEB-induced neutrophil influx. The substance P and IL-1 levels in bronchoalveolar lavage fluid of SEA-exposed rats were significantly hi.-her than SEB. In addition, SEA (but not SEB) significantly released mast cell TNF-alpha. Increased production of TNF-alpha and IL-1 in alveolar macrophages was observed in response to SEA and SEB. In conclusion, sensory neuropeptides contribute significantly to SEA- and SEB-induced pulmonary neutrophil recruitment, but SEA requires in a higher extent the airways sensory innervation, and participation of mast cells and alveolar macrophage products. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Microinjection of noradrenaline into the bed nucleus of the stria terminalis (BST) has been reported to cause a pressor response in unanesthetized rats, which was shown to be mediated by acute vasopressin release into the systemic circulation. In the present study we verified the involvement of magnocellular neurons of the hypothalamic paraventricular (PVN) or supraoptic (SON) nuclei and the local neurotransmitter involved in the pressor response to noradrenaline microinjection into the BST. The PVN pretreatment with the non-selective neurotransmission blocker CoCl(2) (1 nmol/100 nL) inhibited the noradrenaline-evoked pressor response. However, responses were not affected by SON treatment with CoCl(2). Further experiments were carried out to test if glutamatergic neurotransmission in the PVN mediates the pressor response evoked by noradrenaline microinjection into the BST. Pretreatment of the PVN with the selective N-methyl-d-aspartate (NMDA) receptor antagonist LY235959 (2 nmol/100 nL) did not affect the noradrenaline-evoked pressor response. However, PVN pretreatment with the selective non-NMDA receptor antagonist NBQX (2 nmol/100 nL) significantly reduced the pressor response to noradrenaline microinjection into the BST. In conclusion, our results suggest that pressor responses to noradrenaline microinjection into the BST are mediated by PVN magnocellular neurons without involvement of SON neurons. They also suggest that a glutamatergic neurotransmission through non-NMDA glutamate receptors in the PVN mediates the response.
Resumo:
Background and purpose: Hereditary sensory and autonomic neuropathy ( HSAN) type V is a very rare disorder. It is characterized by the absence of thermal and mechanical pain perception caused by decreased number of small diameter neurons in peripheral nerves. Recent genetic studies have pointed out the aetiological role of nerve growth factor beta, which is also involved in the development of the autonomic nervous system and cholinergic pathways in the brain. HSAN type V is usually reported not to cause mental retardation or cognitive decline. However, a structured assessment of the cognitive pro. le of these patients has never been made. Methods and results: We performed a throughout evaluation of four HSAN type V patients and compared their performance with 37 normal individuals. Our patients showed no cognitive deficits, not even mild ones. Discussion and Conclusions: Although newer mutations on this and related disorders are continuously described, their clinical characterization has been restricted to the peripheral aspects of these conditions. A broader characterization of this rare disorder may contribute to better understand the mechanisms of the nociceptive and cognitive aspects of pain.