152 resultados para Pyrometamorphism. Basic intrusions. Potiguar Basin. NE Brazil
Resumo:
The Mantiqueira Province represents a series of supracrustal segments of the South-American counterpart formed during the Gondwana Supercontinent agglutination. In this crustal domain, the process of escape tectonics played a conspicuous role, generating important NE-N-S-trending lineaments. The oblique component of the motions of the colliding tectonic blocks defined the transpressional character of the main suture zones: Lancinha-Itariri, Cubato-Arcadia-Areal, Serrinha-Rio Palmital in the Ribeira Belt and Sierra Ballena-Major Gercino in the Dom Feliciano Belt. The process as a whole lasted for ca. 60 Ma, since the initial collision phase until the lateral escape phase predominantly marked by dextral and subordinate sinistral transpressional shear zones. In the Dom Feliciano Belt, southern Brazil and Uruguay, transpressional event at 630-600 Ma is recognized and in the Ribeira Belt, despite less coevally, the transpressional event occurred between 590 and 560 Ma in its northern-central portion and between ca. 625 and 595 Ma in its central-southern portion. The kinematics of several shear zones with simultaneous movement in opposite directions at their terminations is explained by the sinuosity of these lineaments in relation to a predominantly continuous westward compression.
Resumo:
We present four SHRIMP U-Pb zircon ages for the Choiyoi igneous province from the San Rafael Block, central-western Argentina. Dated samples come from the Yacimiento Los Reyunos Formation (281.4 +/- 2.5 Ma) of the Cochico Group (Lower Choiyoi section: andesitic breccias, dacitic to rhyolitic ignimbrites and continental conglomerates). Agua de los Burros Formation (264.8 +/- 2.3 Ma and 264.5 +/- 3.0 Ma) and Cerro Carrizalito Formation (251.9 +/- 2.7 Ma Upper Choiyoi section: rhyolitic ignimbrites and pyroclastic flows) spanning the entire Permian succession of the Choiyoi igneous province. A single ziron from the El Imperial Formation, that is overlain unconformably by the Choiyoi succession, yielded an early Permian age (297.2 +/- 5.3 Ma). while the main detrital zircon population indicated an Ordovician age (453.7 +/- 8.1 Ma). The new data establishes a more precise Permian age (Artinskian-Lopingian) for the section studied spanning 30 Ma of volcanic activity. Volcanological observations for the Choiyoi succession support the occurrence of explosive eruptions of plinian to ultraplinian magnitudes, capable of injecting enormous volumes of tephra in the troposphere-stratosphere. The new SHRIMP ages indicate contemporaneity between the Choyoi succession and the upper part of the Parana Basin late Paleozoic section, from the Irad up to the Rio do Rasto formations, encompassing about 24 Ma. Geochemical data show a general congruence in compositional and tectonic settings between the volcanics and Parana Basin Permian ash fall derived layers of bentonites. Thickness and granulometry of ash fall layers broadly fit into the depletion curve versus distance from the remote source vent of ultraplinian eruptions. Thus, we consider that the Choiyoi igneous province was the source of ash fall deposits in the upper Permian section of the Parana Basin. Data presented here allow a more consistent correlation between tectono-volcanic Permian events along the paleo-Pacific margin of southwestern Gondwana and the geological evolution of neighboring Paleozoic foreland basins in South America and Africa. (C) 2010 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
The Major Gercino Shear Zone is one of the NE-SW lineaments that separate the Neoproterozoic Dom Feliciano Belt, of Brazil and Uruguay, into two different domains: a northwestern supracrustal domain from a southeastern granitoid domain. The shear zone, striking NE, is composed of protomylonites to ultramylonites with mainly dextral kinematic indicators. In Santa Catarina State, southern Brazil, the shear zone is composed of two mylonite belts. The mylonites have mineral orientations produced under greenschist fades conditions at a high strain rate. Strong flattening and coaxial deformation indicate the transpressive character, while the role of pure shear is emphasized by the orientation of the mylonite belts in relation to the inferred stress field component. The quartz microstructures point out that different dynamic recrystallization regimes and crystal plasticity were the dominant mechanisms of deformation during the mylonitization process. Additionally, the fabrics suggest that the glide systems are activated for deformation conditions compatible with the metamorphism in the middle greenschist facies. Elongated granitoid intrusions belonging to two petrographically, geochemically and isotopically distinct rock associations occur between the two mylonite belts. The structures observed in the granites result from a deformation range from magmatic to solid-state conditions points to a continuum of magma straining during and just after its crystallization. Conventional U-Pb analysis of multi-crystal zircon fractions yielded essentially identical ages of 609 +/- 16 Ma and 614 +/- 2 Ma for the two granitic associations, and constrain the transpressive phase of the shear zone. K-Ar ages of biotites between 585 and 560 Ma record the slow cooling and uplift of the intrusions. Some K-Ar ages of micas in regional mylonites are similar, suggesting that thermo-tectonic activity was intense up to this time, probably related to the agglutination of the granite belt to the supracrustal belt NW of the MGSZ. (C) 2009 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
The Niquelandia complex is a Neoproterozoic mafic-ultramafic intrusion resulting from fractional crystallization of primary picritic basalt intrusions. It consists of two layered sequences: a lower and larger one (LS), where four stratigraphic units exhibit an upward decrease of ultramafic layers and increase of gabbroic layers; an upper, smaller sequence (US), separated from LS by a high-temperature shear zone and consisting of two stratigraphic units (gabbros + anorthosites and amphibolites). Nd and Sr isotopic analyses and rare earth element (REE) profiles provide evidence that the complex suffered important crustal contamination. The LS isotopic array trends from a DM region with positive epsilon Nd and moderately positive epsilon Sr towards a field occupied by crustal xenoliths, especially abundant in the upper LS (negative epsilon Nd and large, positive E:Sr). Each LS stratigraphic unit is distinct from the next underlying unit, showing lower epsilon Nd and higher epsilon Sr, suggesting inputs of fresh magma and mixing with the contaminated, residual magma. The US is characterised by a relatively high variation of epsilon Nd and constant epsilon Sr. REE patterns vary within each unit from LREE depleted to LREE enriched in the samples having lower epsilon Nd and higher epsilon Sr. The contamination process has been modelled by using the EC-AFC algorithms from [Spera, F.J., Bohrson, W.A., 2001. Energy-constrained open-system magmatic processes 1: general model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J. Petrology 42, 999-1018]. The differences between the LS and US isotopic arrays are consistent with contamination by the same crustal component, provided that its melting degree was higher in LS than in US. The different degrees of anatexis are explained by the heat budget released from the magma, higher in LS (because of its larger mass) than in US. Comparison of the correlations between isotopes and incompatible trace element ratios of the models and of the gabbros shows some differences, which are demonstrably related with the variable amount of cumulus phases and trapped melt in the gabbros. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Felsic microgranular enclaves with structures indicating that they interacted in a plastic state with their chemically similar host granite are abundant in the Maua Pluton, SE Brazil. Larger plagioclase xenocrysts are in textural disequilibrium with the enclave groundmass and show complex zoning patterns with partially resorbed An-rich cores (locally with patchy textures) surrounded by more sodic rims. In situ laser ablation-(multi-collector) inductively coupled plasma mass spectrometry trace element and Sr isotopic analyses performed on the plagioclase xenocrysts indicate open-system crystallization; however, no evidence of derivation from more primitive basic melts is observed. The An-rich cores have more radiogenic initial Sr isotopic ratios that decrease towards the outermost part of the rims, which are in isotopic equilibrium with the matrix plagioclase. These profiles may have been produced by either (1) diffusional re-equilibration after rim crystallization from the enclave-forming magma, as indicated by relatively short calculated residence times, or (2) episodic contamination with a decrease of the contaminant ratio proportional to the extent to which the country rocks were isolated by the crystallization front. Profiles of trace elements with high diffusion coefficients would require unrealistically long residence times, and can be modeled in terms of fractional crystallization. A combination of trace element and Sr isotope data suggests that the felsic microgranular enclaves from the Maua Pluton are the products of interaction between end-member magmas that had similar compositions, thus recording `self-mixing` events.
Resumo:
Zirconium- and Ba-rich minerals are found in gabbroic rocks from the Ponte Nova alkaline mafic-ultramafic massif in southeastern Brazil. The unusual mineralogical assemblage includes zirconolite, baddeleyite, Ba-rich alkali feldspar, and Ba- and Ti-rich biotite. Zirconolite of the Ponte Nova massif has higher levels of Zr (up to 1.172 apfu) than those registered in other terrestrial rocks and a prominent enrichment in the light rare-earth elements. Baddeleyite contains small quantities of Hf, Ti, and Fe. The Ba-rich alkali feldspar and Ba- and Ti-rich biotite contain up to 9.25 and 7.35 wt% BaO, respectively, and the biotite contains up to 12.01 wt% TiO(2). In the different intrusions of the Ponte Nova massif, such an unusual assemblage typifies the residual magma after the crystallization of clinopyroxene and olivine from previously enriched basanitic parental magma. The different trends of enrichments in REE and Th + U found for zirconolite of the intrusions of the Ponte Nova massif provide a better understanding of the variable degrees of enrichment of incompatible elements of the distinct gabbroic bodies. A lithospheric mantle source enriched in incompatible elements by the metasomatic action of volatile-rich fluids and with the presence of phlogopite or amphibole (or both) and other minor accessory phases could explain the presence of the Zr- and Ba-rich minerals in this gabbroic massif.
Resumo:
One of the main questions on Neoproterozoic geology regards the extent and dynamics of the glacial systems that are recorded in all continents. We present evidence for short transport distances and localized sediment sources for the Bebedouro Formation, which records Neoproterozoic glaciomarine sedimentation in the central-eastern Sao Francisco Craton (SFC), Brazil. New data are presented on clast composition, based on point counting in thin section and SHRIMP dating of pebbles and detrital zircon. Cluster analysis of clast compositional data revealed a pronounced spatial variability of clast composition on diamictite indicating the presence of individual glaciers or ice streams feeding the basin. Detrital zircon ages reveal distinct populations of Archean and Palaeoproterozoic age. The youngest detrital zircon dated at 874 +/- 9 Ma constrains the maximum depositional age of these diamictites. We interpret the provenance of the glacial diamictites to be restricted to sources inside the SFC, suggesting deposition in an environment similar to ice streams from modern, high latitude glaciers.
Resumo:
Zircon recrystallization is a common process during high-grade metamorphism and promotes partial or complete resetting of the original isotopic and chemical characteristics of the mineral and thus complicates U-Pb geochronological interpretation. In Central Brazil, this complexity may be illustrated by three composite mafic-ultramafic intrusions metamorphosed under amphibolite-to-granulite conditions. Their ages of emplacement and metamorphic ages have been a matter of controversy for the last thirty years. The Serra da Malacacheta and Barro Alto complexes make up the southernmost of these layered bodies and four samples from distinct rock types were investigated in order to verify the consequences of metamorphic alteration of zircon for U-Pb dating. Cathodoluminescent imaging reveals internal features which are typical of concomitant dissolution-reprecipitation processes, such as convolute zoning and inward-moving recrystallization fronts, even in samples in which partially preserved igneous textures are observed. Due to this extensive alteration, LA-ICPMS U-Pb isotopic analysis yielded inconclusive data. However, in situ Hf isotopic and trace-element analyses help to clarify the real meaning of the geochronological data. Low Lu/Hf (<0.004) and homogeneous (176)Hf/(177)Hf(t) values imply that the zircon populations within individual samples have crystallized in a single episode, despite the observed variations in age values. Trace element signatures of zircon grains from garnet-bearing samples reveal that they were unreactive to the development of the peak metamorphism mineral assemblage and, thus, the main chemical feature in such grains is attributed to a coupled dissolution-reprecipitation process. However, in the Cafelandia amphibolite an additional alteration process is identified, probably related to the influx of late-stage fluids. Combined isotopic and geochemical investigation on zircon grains allowed the distinction of two magmatic events. The first corresponds to the crystallization of the Serra da Malacacheta Complex and characterizes a juvenile magmatism at similar to 1.3 Ga. The younger episode, recognized in the Barro Alto Complex, is dated at ca. 800 Ma and is represented by mafic and ultramafic rocks showing intense contamination with continental crust, implying that the emplacement took place, most likely, in a continental back-arc setting. Altered zircon domains as well as titanite grains date the metamorphic event at ca. 760-750 Ma. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The Itaoca pluton consists of porphyritic monzogranite that intruded the upper crust into low-grade metasedimentary rocks of the Apiai Dornain (Ribeira Belt). Anisotropy of magnetic susceptibility and zircon U-Pb (Shrimp) geochronology were combined to determine pluton emplacement mechanisms and its chronology relative to the collision structures of the Paranapiacaba (Brasiliano II) orogenic system. Magnetic susceptibility ranges between 4 and 38 x 10(-3) SI, and thermomagnetic measurements indicate multidomain magnetite is the main carrier of anisotropy. The pluton shows an ""onion-skin"" structure roughly elongated to the northeast with its hinge zone including kilometer-wide roof-pendants. Magnetic lineations are variable in orientation in consistency with the dominant oblate symmetry of the magnetic fabric. A distinct NE-trending point-maxima, however, indicates the mean lineation is parallel to the stretching direction of the transpressive deformation that affected the regional host rocks. Prismatic zircon from the monzogranite, both in the core and in the finely-zoned margins, yielded an age of 623 +/- 10 Ma. These results suggest the magmatic fabric recorded the earlier strain increments of the regional shear deformation. It may correspond to the transition from continental arc to collision tectonics of the southern Ribeira Belt. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The Ribeira belt in SE Brazil is a Neoproterozoic to Early Palaeozoic orogen, whose architecture and history is not yet fully understood. The depositional age of many of the sedimentary sequences in the Ribeira Belt remains unconstrained, and with debate concerning their depositional environment and tectonic setting. In this paper we present SHRIMP zircon U/Pb age constraints for one such problematic unit in the Ribeira Belt the lporanga Formation - and discuss the significance of this age with regards to the timing of Neoproterozoic glacial events in southeast Brazil. Using a felsic volcanic unit immediately under the lporanga Formation and granite cobbles from breccias in its basal parts a reconnaissance SHRIMP U/Pb zircon maximum depositional age of 580 Ma is assigned for the base of this unit. This age is marginally younger than the 625605 Ma ages for intrusions into the Lajeado and Ribeira subgroups, with which the lporanga Formation is in tectonic contact. This indicates that the Lajeado and Ribeira subgroups are not stratigraphically equivalent to the lporanga Formation, as thought previously by some workers. The maximum depositional age of 580 Ma also places a maximum time constraint on the tectonic juxtaposition of the lporanga Formation with other supracrustal units, and on the greenschist facies metamorphism and isoclinal folding that affected it. The potential glacial origin for the lporanga Formation, if correct, would place it in the late Ediacaran - provisionally equivalent to the Gaskiers glaciation. (c) 2007 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
In the surroundings of Caldas and El Retiro cities (Colombia) metamorphic rocks derived from basic and pelitic protoliths comprise the Caldas amphibole schist and the Ancon schist respectively. Subordinated metamorphosed granite bodies (La Miel gneiss) are associated to these units, and The El Retiro amphibolites, migmatites and granulites crops out eastwards of these units, separated by shear zones. The Caldas amphibole schist and the Ancon schist protoliths could have been formed in a distal marine reduced environment and amalgamated to the South American continent in an apparent Triassic subduction event. The El Retiro rocks are akin to a continental basement and possible include impure metasediments of continental margin, whose metamorphism originated granulite facies rocks and migmatites as a result of the anatexis of quartz-feldspathic rocks. The metamorphism was accompanied by intense deformation, which has juxtaposed both migmatites and granulite blocks. Afterward, heat and fluid circulation associated with the emplacement of minor igneous intrusions resulted in intense fluid-rock interaction, variations in the grain size of the minerals and, especially, intense retrograde metamorphic re-equilibrium. Thermobarometric estimations for the Caldas amphibole schist indicate metamorphism in the Barrovian amphibolite fades. The metamorphic path is counter-clockwise, but retrograde evolution could not be precisely defined. The pressures of the metamorphism in these rocks range from 6.3 to 13.5 kbar, with narrow temperature ranging from 550 to 630 degrees C. For the Ancon schist metapelites the P-T path is also counter-clockwise, with a temperature increase evidenced by the occurrence of sillimanite and the cooling by later kyanite. The progressive metamorphism event occurred at pressures of 7.6-7.2 kbar and temperatures of 645-635 degrees C for one sample and temperature between 500 and 600 degrees C under constant pressure of 6 kbar. The temperature estimated for these rocks varies between 400 and 555 degrees C at pressures of 5-6 kbar in the retrograde metamorphic path. The El Retiro rocks evidence strong decompression with narrow variation in temperature, showing pressure values between 8.7 and 2.7 kbar at temperatures of 740-633 degrees C. These metamorphic fragments of the basement in the Central Cordillera of the Colombian Andes could represent a close relationship with an antique subduction zone. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A 172 cm-long sediment core was collected from a small pristine lake situated within a centripetal drainage basin in a tropical karst environment (Ribeira River valley, southeastern Brazil) in order to investigate the paleoenvironmental record provided by the lacustrine geochemistry. Sediments derived from erosion of the surrounding cambisoils contain quartz, kaolinite, mica, chlorite and goethite. Accelerator mass spectroscopy (AMS) (14)C dating provided the geochronological framework. Three major sedimentary units were identified based on the structure and color of the sediments: Unit III from 170 to 140 cm (1030 +/- 60-730 +/- 60 yr BP), Unit II from 140 to 90 cm (730 +/- 60-360 +/- 60 yr BP) and Unit I from 90 to 0 cm (360 +/- 60-0 yr BP). Results of major and trace element concentrations were analysed through multivariate statistical techniques. Factor analysis provided three factors accounting for 72.4% of the total variance. F1 and F2 have high positive loadings from K, Ba, Cs, Rb, Sr, Sc, Th, light rare earth element (LREE), Fe, Cr, Ti, Zr, Hf and Ta, and high negative loadings from Mg, Co, Cu, Zn, Br and loss on ignition (LOI). F3, with positive loadings from V and non-metals As and Sb, accounts for a low percentage (9.7%) of the total variance, being therefore of little interpretative use. The profile distribution of F1 scores reveals negative values in Units I and III, and positive values in Unit II, meaning that K, Ba, Cs, Rb, Sr, Sc, Th, LREE, Fe, Cr, Ti, Zr, Hf and Ta are relatively more concentrated in Unit II, and Mg, Co, Cu, Zn and Br are relatively more abundant in Units I and III. The observed fluctuations in the geochemical composition of the sediments are consistent with slight variations of the erosion intensity in the catchment area as a possible response to variations of climatic conditions during the last millennium. (c) 2009 Elsevier GmbH. All rights reserved.
Resumo:
The Jacadigo Group contains one of the largest sedimentary iron and associated manganese deposits of the Neoproterozoic. Despite its great relevance, no detailed sedimentological study concerning the unit has been carried out to date. Here we present detailed sedimentological data and interpretation on depositional systems, system tracts, external controls on basin evolution, basin configuration and regional tectonic setting of the Jacadigo Basin. Six depositional systems were recognized: (I) an alluvial fan system; (II) a siliciclastic lacustrine system; (III) a fan-delta system; (IV) a bedload-dominated river system; (V) an iron formation-dominated lacustrine or marine gulf system; and (VI) a rimmed carbonate platform system. The interpreted depositional systems are related to three tectonic system tracts. The first four depositional systems are mainly made of continental siliciclastics and refer to the rift initiation to early rift climax stage; the lake/gulf system corresponds to the mid to late rift climax stage and the carbonate platform represents the immediate to late post rift stage (Bocaina Formation deposits of the Ediacaran fossil-bearing Corumba Group). The spatial distribution of the depositional systems and associated paleocurrent patterns indicate a WNW-ESE orientation of the master fault zone related to the formation of the Jacadigo Basin. Thus, the iron formations of the Jacadigo Group were deposited in a starved waterbody related to maximum fault displacement and accommodation rates in a restricted continental rift basin. The Fe-Si-Mn source was probably related to hydrothermal plume activity that reached the basin through the fault system during maximum fault displacement phases. Our results also suggest a restricted tectono-sedimentary setting for the type section of the Puga Formation. The Jacadigo Group and the Puga Formation, usually interpreted as glacial deposits, are readdressed here as basin margin gravitational deposits with no necessary relation to glacial processes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Basic oxygen furnace (BOF) slag media were studied as a potential treatment material in on-site sanitation systems. Batch and column studies were conducted to evaluate attenuation of the bacteriophage PR772 and 0.190 mu m diameter microspheres by BOF media, and to delineate the relative contributions of two principle processes of virus attenuation: inactivation and attachment. In the batch studies, conducted at 4 degrees C, substantial inactivation of PR772 did not occur in the pH 7.6 and 9.5 suspensions. At pH 11.4, bimodal inactivation of PR772 was observed, at an initial rate of 2.1 log C/C(0) day(-1) for the first two days, followed by a much slower rate of 0.124 log C/C(0) day(-1) over the following 10 days. Two column studies were conducted at 4 degrees C at a flow rate of 1 pore volume day(-1) using two slag sources (Stelco, Ontario; Tubarao, Brazil) combined with sand and pea gravel. In both column experiments, the effluent microsphere concentration approached input concentrations over time (reductions of 0.1-0.2 log C/C(0)), suggesting attachment processes for microspheres were negligible. Removal of PR772 virus was more pronounced both during the early stages of the experiments, but also after longer transport times (0.5-1.0 log C/C(0)). PR772 reduction appeared to be primarily as a result of virus inactivation in response to the elevated pH conditions generated by the BOF mixture (10.6-11.4). On-site sanitation systems using BOF media should be designed to maintain sufficient contact time between the BOF media and the wastewater to allow sufficient residence time of pathogens at elevated pH conditions. (C) 2009 Published by Elsevier Ltd.
Resumo:
The Bocaina Plateau, which is situated on the eastern flank of the continental rift of southeastern Brazil, is the highest part of the Serra do Mar. Topographic relief in this area is suggested to be closely related to its complex tectono-magmatic evolution since the breakup of Western Gondwana and opening of the South Atlantic Ocean. Apatite fission track ages and track length distributions from 27 basement outcrops were determined to assess these hypotheses and reconstruct the denudation history of the Bocaina Plateau. The ages range between 303 +/- 32 and 46 +/- 5 Ma, and are significantly younger than the stratigraphic ages. Mean track lengths vary from 13.44 +/- 1.51 to 11.1 +/- 1.48 mu m, with standard deviations between 1.16 and 1.83 mu m. Contrasting ages within a single plateau and similar ages at different altitudes indicate a complex regional tectonothermal evolution. The thermal histories inferred from these data imply three periods of accelerated cooling related to the Early Cretaceous continental breakup, Early Cretaceous alkaline magmatism, and the Paleogene evolution of the continental rift of southeastern Brazil. The oldest fission track ages (>200 Ma) were obtained in the Serra do Mar region, suggesting that these areas were a long-lived source of sediments for the Parana, Bauru, and Santos basins. (C) 2010 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.