189 resultados para Plasma fluoride


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have indicated that the use of low-fluoride dentifrices could lead to proportionally higher plaque fluoride levels when compared with conventional dentifrices. This double-blind, randomized, crossover study determined the effects of placebo, low-fluoride, and conventional dentifrices on plaque fluoride concentrations ([F]) in children living in communities with 0.04, 0.72, and 3.36 ppm F in the drinking water. Children used the toothpastes twice daily, for 1 wk. Samples were collected 1 and 12 hrs after the last use of dentifrices and were analyzed for fluoride and calcium. Similar increases were found 1 hr after the children brushed with low-fluoride (ca. 1.9 mmol F/kg) and conventional (ca. 2.4 mmol F/kg) dentifrices in the 0.04- and 0.72-ppm-F communities. Despite the fact that the increases were less pronounced in the 3.36-ppm-F community, our results indicate that the use of a low-fluoride dentifrice promotes a proportionally higher increase in plaque [F] when compared with that achieved with a conventional dentifrice, based on dose-response considerations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been suggested that fluoride products are able to reduce erosive tooth wear. Thus, the purpose of this in vitro study was to evaluate the effect of dentifrices with different fluoride concentrations as well as of a low-fluoridated dentifrice supplemented with trimetaphosphate (TMP) on enamel erosion and abrasion. One hundred twenty bovine enamel blocks were assigned to the following experimental dentifrices: placebo, 1,100 mu g F/g, 500 mu g F/g plus 3% TMP and 5,000 mu g F/g. The groups of enamel blocks were additionally subdivided into conditions of erosion (ERO) and of erosion plus abrasion (ERO + ABR). For 7 days, the blocks were subjected to erosive challenges (immersion in Sprite (R) 4 times a day for 5 min each time) followed by a remineralizing period (immersion in artificial saliva between erosive challenges for 2 h). After each erosive challenge, the blocks were exposed to slurries of the dentifrices (10 ml/sample for 15 s). Sixty of the blocks were additionally abraded by brushing using an electric toothbrush (15 s). The alterations of the enamel were quantified using the Knoop hardness test and profilometry (measurements in micrometers). The data were analyzed using a 2-way ANOVA test followed by a Bonferroni correction (p < 0.05). In in vitro conditions, the 5,000 mu g F/g and 500 mu g F/g plus 3% TMP dentifrices had a greater protective effect when compared with the 1,100 mu g F/g dentifrice, under both ERO and ERO + ABR conditions. The results suggest that dentifrices alone are not capable of completely inhibiting tooth wear. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Low-fluoride dentifrices have been suggested as alternatives to reduce dental fluorosis risk, but there is no consensus regarding their clinical effectiveness, which has been suggested to be increased when their pH is acidic. Aims: This single-blind randomized clinical trial evaluated the caries increment during the use of a low-fluoride acidic liquid dentifrice. Methods: Four-year-old schoolchildren (n = 1,402) living in a fluoridated area (0.6-0.8 ppm F) were randomly allocated to 4 groups differing according to the type of dentifrice used over a 20-month period. Group 1 (n = 345): liquid dentifrice, 1,100 ppm F, pH 4.5. Group 2 (n = 343): liquid dentifrice, 1,100 ppm F, pH 7.0. Group 3 (n = 354): liquid dentifrice, 550 ppm F, pH 4.5. Group 4 (n = 360): toothpaste, 1,100 ppm F, pH 7.0. At baseline and after 20 months, clinical examinations were conducted (dmfs index) and caries increment was calculated. Data were analysed by GLM procedure using classrooms (cluster) as unit of analysis (p < 0.05). Results: The mean +/- SD (95% CI) net increments found were as follows. Group 1: 2.06 +/- 2.38 (1.8-2.3); group 2: 2.08 +/- 2.87 (1.7-2.4); group 3: 2.05 +/- 2.79 (1.7-2.4), and group 4: 2.08 +/- 2.34 (1.8-2.4). No significant differences were detected among the groups. Conclusion: In a population with high caries risk living in a fluoridated area, as the selected sample, and according to the present protocol, the low-fluoride acidic liquid dentifrice seems to lead to similar caries progression rates as conventional 1,100 ppm F toothpaste. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: This study aimed to compare the effects 0.5% and 1% sodium, amine and stannous fluoride at different pH on enamel erosion in vitro. Methods: Bovine enamel samples were submitted to a cyclic de- and remineralisation for 3 days. Each day, the samples were exposed for 120 min to pooled human saliva and subsequently treated with one of the fluoride solutions for 3 min: amine fluoride (AmF, 0.5% and 1% F(-)), sodium fluoride (NaF, 0.5% and 1% F(-)), each at pH 3.9 and 7.0, and stannous fluoride (SnF(2), 0.5% and 1% F-), at pH: 3.9. Additionally, two groups were treated with fluoride-free placebo solutions (pH: 3.9 and 7.0) and one group served as control (no fluoridation). Ten specimens each group were inserted in a so-called artificial mouth and eroded six times daily with hydrochloric acid (pH 2.6) for 90 s each intermitted by exposure to artificial saliva (1 h). After 3 days, enamel loss was analyzed profilometrically and evaluated statistically by ANOVA. Results: Only the acidic 0.5% and 1% SnF(2) and 1% AmF solutions were able to reduce erosive enamel loss significantly, while all other solutions and placebos did not differ significantly from the control. Between the acidic SnF(2) and the 1% AmF solutions no significant differences could be detected. Conclusion: At the same concentrations, acidic SnF(2) and AmF may be more effective than NaF to protect enamel against erosion. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-dimensional gel electrophoresis (2-DE) was used to better understand alterations in renal metabolism induced by fluoride (F). Three groups of weanling male Wistar rats were treated with drinking water containing 0 (control), 5, or 50 ppm F for 60 days (n=6/group). Kidneys were collected for proteomic and histological (HE) analysis. After protein isolation, renal proteome profiles were examined using 2-DE and Colloidal Coomassie Blue staining. Protein spots with a 2-fold significant difference as detected by quantitative intensity analysis (image Master Platinum software) and t-test (p < 0.05) were excised and analyzed by MALDI-TOF MS (matrix assisted laser desorption ionization-time-of-flight mass spectrometry). The histological analysis revealed no damage in kidneys induced by F, except for a vascular congestion in the 50 ppm F group. Between control vs 50 ppm F, and control vs 5 ppm F groups, 12 and 6 differentially expressed proteins were detected, respectively. Six proteins, mainly related with metabolism, detoxification and housekeeping, were successfully identified. At the high F group, pyruvate carboxylase, a protein involved in the formation of oxaloacetate was found to be downregulated, while enoyl coenzyme A hydratase, involved in fatty acids oxidation, was found to be upregulated. Thus, proteomic analysis can provide new insights into the alterations in renal metabolism after F exposure, even in low doses. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been no comparison of fluoride (F) intake by pre-school children receiving more traditional sources of systemic F. The aim of this study was to estimate the dietary F intake by children receiving F from artificially fluoridated water (AFW-Brazil, 0.6-0.8 mg F/L), naturally fluoridated water (NFW-Brazil, 0.6-0.9 mg F/L), fluoridated salt (FS-Peru, 180-200 mg F/Kg), and fluoridated milk (FM-Peru, 0.25 mg F). Children (n = 21-26) aged 4-6 yrs old participated in each community. A non-fluoridated community (NoF) was evaluated as the control population. Dietary F intake was monitored by the ""duplicate plate"" method, with different constituents (water, other beverages, and solids). F was analyzed with an ion-selective electrode. Data were tested by Kruskall-Wallis and Dunn`s tests (p < 0.05). Mean (+/- SD) F intake (mg/Kg b.w./day) was 0.04 +/- 0.01(b), 0.06 +/- 0.02(a,b), 0.05 +/- 0.02(a,b), 0.06 +/- 0.01(a), and 0.01 +/- 0.00(c) for AFW/NFW/FS/FM/NoF, respectively. The main dietary contributors for AFW/NFW and FS/FM/NoF were water and solids, respectively. The results indicate that the dietary F intake must be considered before a systemic method of fluoridation is implemented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate the influence of dentifrice pH and fluoride (F) concentration on F uptake by plaque and nails, two sets of 5-to 6-year-old children were randomly allocated into four groups, according to the type of dentifrice they had been using for 1 year: (1) experimental liquid dentifrice (ELD), 1,100 ppm F, pH 7.0; (2) ELD, 1,100 ppm F, pH 4.5; (3) ELD, 550 ppm F, pH 4.5, and (4) commercial toothpaste, 1,100 ppm F, pH 7.0. In one set of children, nails were clipped. In the second, plaque samples were collected 1 h after the last use of dentifrice. F concentration in plaque and nails was analyzed. Plaque F concentration was significantly lower in group 4 than in groups 1-3. Nail F concentration was significantly higher in group 4, and significantly lower in group 3, than in group 1 or 2. Plaque F uptake was influenced significantly by dentifrice consistency and nonsignificantly by pH and F concentration. Reduction of dentifrice pH did not affect nail F concentration. Copyright (C) 2009 S. Karger AG, Basel

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nails have been suggested as suitable biomarkers of exposure to F, with the advantage of being easily obtained. The effect of water F concentration, age, gender, nail growth rate and geographical area on the F concentration in the fingernail and toenail clippings were evaluated. Volunteers (n = 300) aged 3-7, 14-20, 30-40 and 50-60 years from five Brazilian communities (A-E) participated. Drinking water and nail samples were collected and F concentration was analyzed with the electrode. A reference mark was made on each nail and growth rates were calculated. Data were analyzed by ANOVA and linear regression (alpha = 0.05). Mean water F concentrations (8 SE, mg/l) were 0.09 +/- 0.01, 0.15 +/- 0.01, 0.66 +/- 0.01, 0.72 +/- 0.02, and 1.68 +/- 0.08 for A-E, respectively. Mean F concentrations (+/- SE, mg/kg) ranged between 1.38 +/- 0.14 (A, 50-60 years) and 10.20 +/- 2.35 (D, 50-60 years) for fingernails, and between 0.92 +/- 0.08 (A, 14-20 years) and 7.35 +/- 0.80 (E, 50-60 years) for toenails. Among the tested factors, geographical area and water F concentration exerted the most influence on finger- and toenail F concentrations. Subjects of older age groups (30-40 and 50-60 years) from D and E showed higher nail F concentrations than the others. Females presented higher nail F concentration than males. Water F concentration, age, gender and geographical area influenced the F concentration of finger- and toenails, and hence should be taken into account when using this biomarker of exposure to predict risk for dental fluorosis. Copyright (C) 2009 S. Karger AG, Basel

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been suggested that fluoride retention in plaque is limited by available binding sites. We determined the effects of fluoridated or placebo dentifrices on plaque and salivary fluoride concentrations [F]s in communities with different water fluoride concentrations (0.04, 0.85, 3.5 ppm). After one week of dentifrice use, samples were collected 1.0 and 12 hrs after the last use of dentifrices. After the use of fluoridated dentifrice, plaque fluoride concentrations were higher at both times, except at 12 hrs in the 3.5-ppm community. Plaque concentrations at 1.0 hr after the use of fluoridated dentifrice increased almost constantly (6.5 mmol/kg), but then decreased approximately 50% at 12 hrs in each community. Unlike previous studies, the present findings suggest that the use of fluoridated dentifrice is likely to increase plaque fluoride concentrations significantly for up to 12 hrs in areas where the water contains fluoride close to 1.0 ppm. As previously reported, plaque fluoride concentrations were directly related to calcium concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This in situ/ex vivo study assessed the effect of different concentrations of fluoride in dentifrices on dentin subjected to erosion or to erosion plus abrasion. Ten volunteers took part in this crossover and double-blind study performed in 3 phases (7 days). They wore acrylic palatal appliances containing 4 bovine dentin blocks divided in two rows: erosion and erosion plus abrasion. The blocks were subjected to erosion by immersion ex vivo in a cola drink (60 s, pH 2.6) 4 times daily. During this step, the volunteers brushed their teeth with one of three dentifrices D (5,000 ppm F, NaF, silica); C (1,100 ppm F, NaF, silica) and placebo (22 ppm F, silica). Then, the respective dentifrice slurry (1: 3) was dripped on dentin surfaces. While no further treatment was performed in one row, the other row was brushed using an electric toothbrush for 30 s ex vivo. The appliances were replaced in the mouth and the volunteers rinsed with water. Dentin loss was determined by profilometry and analyzed by 2-way ANOVA/Bonferroni test (alpha = 0.05). Dentin loss after erosive-abrasive wear was significantly greater than after erosion alone. Wear was significantly higher for the placebo than for the D and C dentifrices, which were not significantly different from each other. It can be concluded that the presence of fluoride concentrations around 1,100 ppm in dentifrices is important to reduce dentin wear by erosion and erosion + abrasion, but the protective effect does not increase with fluoride concentration. Copyright (C) 2008 S. Karger AG, Basel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been no comparison between fluoride concentrations in urine and nails of children exposed to different sources of systemic fluoride. The aim of this study was to compare the relationship between fluoride intake with urinary fluoride excretion and fluoride concentrations in fingernails and toenails of children receiving fluoride from artificially fluoridated water (0.6-0.8 mg F/L, n = 25), naturally fluoridated water (0.6-0.9 mg F/L, n = 21), fluoridated salt (180-200 mg F/Kg, n = 26), and fluoridated milk (0.25 mg F, n = 25). A control population was included (no systemic fluoride, n = 24). Fluoride intake from diet and dentifrice, urinary fluoride excretion, and fluoride concentrations in fingernails/toenails were evaluated. Fluoride was analyzed with an ion-selective electrode. Urinary fluoride excretion in the control community was significantly lower when compared with that in the fluoridated cities, except for the naturally fluoridated community. However, the same pattern was not as evident for nails. Both urinary fluoride output and fluoride concentrations in fingernails/toenails were significantly correlated to total fluoride intake. However, the correlation coefficients for fluoride intake and urinary fluoride output were lower (r = 0.28, p < 0.01) than those observed for fingernails/toenails (r = 0.36, p < 0.001), suggesting that nails might be slightly better indicators of fluoride intake at the individual level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The purpose of this study was to evaluate the amount of dentifrice applied to the toothbrush by school children using a liquid dentifrice (drop technique), when compared to toothpaste. Materials and Methods: A total of 178 school children (4-8 years old) from two cities in Brazil (Bauru and Bariri) participated in the present two-part crossover study. Children from Bauru received training regarding tooth-brushing techniques and use of dentifrice before data collection. In each phase, the amount of toothpaste or liquid dentifrice applied by the children to the toothbrush was measured, using a portable analytical balance (+/- 0.01 g). Data were tested by analysis of covariance (Ancova) and linear regression (p < 0.05). Results: The mean (+/- standard deviation) amounts of toothpaste and liquid dentifrice applied to the toothbrushes for children from Bauru were 0.41 +/- 0.20 g and 0.15 +/- 0.06 g, respectively. For children from Bariri, the amounts applied were and 0.48 +/- 0.24 g and 0.14 +/- 0.05 g, respectively. The amount of toothpaste applied was significantly larger than the amount of liquid dentifrice for both cities. Children from Bariri applied a significantly larger amount of toothpaste, when compared to those from Bauru. However, for the liquid dentifrice, there was no statistically significant difference between the cities. A significant correlation between the amount of toothpaste applied and the age of the children was verified, but the same was not found for the liquid dentifrice. Conclusion: The use of the drop technique reduced and standardised the amount of dentifrice applied to the toothbrush, which could reduce the risk of dental fluorosis for young children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: This study assessed the percentage of the amount of dentifrice loaded onto the toothbrush that is ingested by children, taking into account age, the amount of dentifrice used during toothbrushing, and the dentifrice flavor. Methods: The sample consisted of 155 children of both genders attending public kindergartens and schools in Bauru, Brazil, divided into 5 groups (n = 30-32) of children aged 2, 3, 4, 5 and 6 years old. The dentifrices used were Sorriso(TM) (1219 ppm F, peppermint-flavored) and Tandy(TM) (959 ppm F, tutti-frutti-flavored). The assessment of fluoride intake from dentifrices was carried out six times for each child, using 0.3, 0.6, and 1.2 g of each dentifrice, following a random, crossover distribution. Brushing was performed by the children or their parents/caregivers according to the home habits and under the observation of the examiner. Fluoride present in the expectorant and on toothbrush was analyzed with an ion-specific electrode after HMDS-facilitated diffusion. Fluoride ingestion was indirectly derived. Results were analyzed by 3-way repeated-measures anova and Tukey`s tests (P < 0.05) using the percent dentifrice ingested as response variable. Results: Age and percent dentifrice ingested for both dentifrices, and the three amounts used were inversely related (P < 0.0001). Percent dentifrice ingested was significantly higher after the use of Tandy(TM) under all conditions of the study when compared with Sorriso(TM) (P < 0.0001). Significant differences were observed when brushing with 0.3 g when compared with 1.2 g, for both dentifrices tested (P < 0.05). Conclusions: The results indicate that all variables tested must be considered in preventive measures aiming to reduce the amount of fluoride ingested by young children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The aim of this study was to evaluate the preventive effect in vitro of experimental gel containing iron and/or fluoride on the erosion of bovine enamel. Methods: To standardize the blocks (n = 80), specimens (4 x 4 mm) were previously selected to measure the initial microhardness. The blocks were randomly allocated into four groups of 20 samples each: C (control, placebo gel); F (fluoride gel, 1.23% NaF); Fe (iron gel, 10 mmol/L FeSO(4)) and F + Fe (fluoride + iron gel). The gels were applied and removed after 1 minute. The blocks were then submitted to six alternating remineralization and demineralization cycles. The beverage Coca-Cola (R) (10 minutes, 30 mL) was used for demineralization, and artificial saliva (1 hour) for remineralization. The effect of erosion was measured by wear analysis (profilometry). Data were analysed by ANOVA and the Tukey test for individual comparisons (p <0.05). Results: The mean wear (+/- SD, mu m) was C: 0.94 +/- 0.22; F: 0.55 +/- 0.12; Fe: 0.49 +/- 0.11 and F + Fe: 0.55 +/- 0.13. When the experimental gels were used, there was statistically significant reduction in enamel wear in comparison with the control (p <0.001). However, the experimental gels did not differ significantly among them. Conclusions: The gels containing iron with or without fluoride are capable of interfering with the dissolution dental enamel in the presence of erosive challenge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Researchers have proposed the use of fluoride for the prevention of enamel wear; however, only limited information is available about the impact of fluoridated dentifrices. Because tooth wear is a well-recognized dental problem, the authors conducted an in situ, ex vivo study to assess the efficacy of a highly concentrated fluoride dentifrice on bovine enamel subjected to erosion and abrasion. Methods. The authors conducted a double-blind, crossover in situ study consisting of three phases (seven days each). In each phase, the authors tested one of the dentifrices (5,000 parts per million fluoride [F]; 1,100 ppm F; no F). They performed erosive challenges with the use of cola drink (60 seconds, four times per day) and abrasive challenges via toothbrushing (30 seconds, four times per day). The authors determined the enamel loss via profilometry. Results. The authors tested the data by using two-way analysis of variance (P <.05). For the erosion-plus-abrasion condition, the study results showed that enamel wear was significantly higher than that with erosion alone. The findings showed no significant differences between the dentifrices regarding enamel wear. Conclusions. Within the in situ, ex vivo conditions of this study, the authors concluded that the highly concentrated fluoride dentifrice did not have a protective effect on enamel against erosion and erosion plus toothbrushing abrasion. Clinical Implications. Patients at risk of developing enamel erosion should benefit from preventive measures other than fluoride dentifrice, because even a highly concentrated fluoride dentifrice does not appear to prevent enamel erosion.