171 resultados para PCR quantitative
Resumo:
Altered activity of matrix metalloproteinases (MMPs) is implicated in the vascular remodeling of hypertension. We examined whether increased MMP-2 expression/activity plays a role in the vascular remodeling and dysfunction found in the two-kidney, one-clip (2K-1C) hypertension. Sham operated or 2K-1C hypertension rats were treated with doxycycline 30 mg/(kg day) (or vehicle). Systolic blood pressure was monitored weekly. After 8 weeks of treatment, aortic rings were isolated to assess endothelium-dependent and independent relaxations. Quantitative morphometry of structural changes, collagen, and elastin contents in the aortic wall were studied in hematoxylin/eosin, Sirius Red, and Orceine stained aortic sections, respectively. Aortic MMP-2 levels were determined by gelatin zymography and aortic MMP-2 proteolytic activity was measured using DQ gelatin as the substrate after MMP-2 was captured by a specific antibody and immobilized on a microplate. Aortic MMP-2/tissue inhibitor of metalloprotemases (TIMP)-2 mRNA levels were determined by real time RT-PCR. Doxycycline attenuated 2K-1C hypertension (215 +/- 8 mmHg versus 167 +/- 13 mmHg in 2K-1C rats and 2K-1C + doxy rats, respectively; P < 0.01) and prevented the 35% reduction in endothelium-dependent vasorelaxation found in 2K-1C rats. Doxycycline prevented the increases in media thickness, and was associated with lower media/lumen and cross-sectional areas (all P<0.01). Doxycycline also prevented excessive collagen and elastin deposition in the vascular wall. Increased MMP-2 and Pro-MMP-2 levels and MMP-2 activity were found in the aortas of 2K-1C rats (all P<0.05). A 21-fold increase (P<0.001) in the ratio of MMP-2/TIMP-2 mRNA expression was found in the 2K-1C group, whereas this ratio remained unaltered in 2K-1C+doxy rats. Our results suggest that MMP-2 plays a role in 2K-1C hypertension and its structural and functional vascular changes, which were attenuated by doxycycline. (C) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The objective of this article was to estimate quantitative differences for GAPDH transcripts and poly(A) mRNA: (i) between oocytes collected from cumulus-oocyte complexes (COCs) qualified morphologically as grades A and B; (ii) between grade A oocytes before and after in vitro maturation (IVM); and (iii) among in vitro-produced embryos at different developmental stages. To achieve this objective a new approach was developed to estimate differences between poly(A) mRNA when using small samples. The approach consisted of full-length cDNA amplification (acDNA) monitored by real-time PCR, in which the cDNA from half of an oocyte or embryo was used as a template. The GAPDH gene was amplified as a reverse transcription control and samples that were not positive for GAPDH transcripts were discarded. The fold differences between two samples were estimated using delta Ct and statistical analysis and were obtained using the pairwise fixed reallocation randomization test. It was found that the oocytes recovered from grade B COCs had quantitatively less poly(A) mRNA (p < 0.01) transcripts compared with grade A COCs (1 arbitrary unit expression rate). In the comparison with immature oocytes (I arbitrary unit expression rate), the quantity of poly(A) mRNA did not change during IVM, but declined following IVF and varied with embryo culture (p < 0.05). Amplification of cDNA by real-time PCR was an efficient method to estimate differences in the amount of poly(A) mRNA between oocytes and embryos. The results obtained from individual oocytes suggested an association between poly(A) mRNA abundance and different morphological qualities of oocytes from COCs. In addition, a poly(A) mRNA profile was characterized from oocytes undergoing IVM, fertilization and blastocyst heating.
Resumo:
Objectives To evaluate the presence of false flow three-dimensional (3D) power Doppler signals in `flow-free` models. Methods 3D power Doppler datasets were acquired from three different flow-free phantoms (muscle, air and water) with two different transducers and Virtual Organ Computer-aided AnaLysis was used to generate a sphere that was serially applied through the 3D dataset. The vascularization flow index was used to compare artifactual signals at different depths (from 0 to 6 cm) within the different phantoms and at different gain and pulse repetition frequency (PR F) settings. Results Artifactual Doppler signals were seen in all phantoms despite these being flow-free. The pattern was very similar and the degree of artifact appeared to be dependent on the gain and distance from the transducer. False signals were more evident in the far field and increased as the gain was increased, with false signals first appearing with a gain of 1 dB in the air and muscle phantoms. False signals were seen at a lower gain with the water phantom (-15 dB) and these were associated with vertical lines of Doppler artifact that were related to PRF, and disappeared when reflections were attenuated. Conclusions Artifactual Doppler signals are seen in flow-free phantoms and are related to the gain settings and the distance from the transducer. In the in-vivo situation, the lowest gain settings that allow the detection of blood flow and adequate definition of vessel architecture should be used, which invariably means using a setting near or below the middle of the range available. Additionally, observers should be aware of vertical lines when evaluating cystic or liquid-containing structures. Copyright (C) 2010 ISUOC. Published by John Wiley & Sons, Ltd.
Calpain5 expression is decreased in endometriosis and regulated by HOXA10 in human endometrial cells
Resumo:
Calpains have been implicated in the regulation of apoptosis. Here, we identified Calpain5 as a target of HOXA10 transcriptional regulation in endometrial cells as well as its aberrant regulation in endometriosis. Histologically confirmed biopsies of endometriosis were obtained from 20 women. Eutopic endometrium was collected by endometrial biopsy from 30 controls and from the 20 subjects with endometriosis. First trimester decidual samples were obtained from five subjects at the time of pregnancy termination. Immunohistochemistry was used to identify Calpain5 expression. Calpain5 was expressed in endometrial stromal and glandular cells throughout the menstrual cycle and in decidua. Calpain5 protein expression was decreased in both stromal and glandular cells from women with endometriosis compared with that of fertile controls. Human endometrial stromal and epithelial cell lines were transfected with pcDNA/HOXA10, HOXA10 siRNA or respective controls. Quantitative real-time RT-PCR was performed to determine expression of HOXA10 and Calpain5 in each group. Transfection of HESC cells with an HOXA10 expression construct led to increased Calpain5 expression, whereas transfection with siRNA resulted in decreased expression. In conclusion, Calpain5 expression is regulated by HOXA10. Calpain5 expression was decreased in endometriosis likely as a result of decreased HOXA10 expression. Decreased apoptosis in endometrial cells may promote the development of endometriosis through a pathway involving HOXA10, Calpain5 and caspase.
Resumo:
Background: Spinal muscular atrophy is a common autosomal recessive neuromuscular disorder caused by mutations in the SMN1 gene. Identification of spinal muscular atrophy carriers has important implications for individuals with a family history of the disorder and for genetic counseling. The aim of this study was to determine the frequency of carriers in a sample of the nonconsanguineous Brazilian population by denaturing high-performance liquid chromatography (DHPLC). Methods: To validate the method, we initially determined the relative quantification of DHPLC in 28 affected patients (DHPLC values: 0.00) and 65 parents (DHPLC values: 0.49-0.69). Following quantification, we studied 150 unrelated nonconsanguineous healthy individuals from the general population. Results: Four of the 150 healthy individuals tested (with no family history of a neuromuscular disorder) presented a DHPLC value in the range of heterozygous carriers (0.6-0.68). Conclusions: Based on these results, we estimated there is a carrier frequency of 2.7% in the nonconsanguineous Brazilian population, which is very similar to other areas of the world where consanguineous marriage is not common. This should be considered in the process of genetic counseling and risk calculations. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
The development of HTLV-1 associated clinical manifestations, such as TSP/HAM and ATLL, occur in 2-4% of the infected population and it is still unclear why this infection remains asymptomatic in most infected carriers. Recently, it has been demonstrated that HTLV uses the Glucose transporter type 1 (GLUT1) to infect T-CD4(+) lymphocytes and that single nucleotide polymorphisms (SNP) in the GLUT1 gene are associated with diabetic nephropathy in patients with diabetes mellitus in different populations. These polymorphisms could contribute to a higher GLUT1 protein expression on cellular membrane, facilitating the entry of HTLV and its transmission cell by cell. This could result in a higher provirus load and consequently in the development of TSP/HAM. To evaluate the role of GLUT1 gene polymorphisms in the development of TSP/HAM in HTLV-1 infected individuals, the g.22999G > T, g.15339T > C and c.-2841A > T sites were analyzed by PCR/RFLP or sequencing in 244 infected individuals and 102 normal controls. The proviral load of the HTLV-1 infected patients was also analyzed using Real Time Quantitative PCR. Genotypic and allelic frequencies of the three sites did not differ significantly between controls and HTLV-1 infected individuals. There was no difference in genotypic and allelic distributions among patients as to the presence or absence of HTLV-1 associated clinic manifestations. As regards the quantification of the provirus load, we observed a significant reduction in the asymptomatic individuals compared with the oligosymptomatic and TSP/HAM individuals. These results suggest that g.22999G > T, g.15339T > C, and c.-2841A > T SNP do not contribute to HTLV-1 infection nor to the genetic susceptibility of TSP/HAM in Brazilian HTLV-1 infected individuals. J. Med. Virol. 81:552557, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
Cell resistance to glucocorticoids is a major problem in the treatment of nasal polyposis (NP). The objectives of this study were to observe the effect of budesonide on the expression of IL-1 beta, TNF-alpha, granulocyte macrophage-colony stimulating factor, intercellular adhesion molecule (ICAM)-1, basic fibroblast growth factor, eotaxin-2, glucocorticoid receptor (GR)-alpha, GR-beta, c-Fos and p65 in nasal polyps and to correlate their expression to clinical response. Biopsies from nasal polyps were obtained from 20 patients before and after treatment with topical budesonide. Clinical response to treatment was monitored by a questionnaire and nasal endoscopy. The mRNA levels of the studied genes were measured by real-time quantitative (RQ)-PCR. There was a significant decrease in the expression of TNF-alpha (P < 0.05), eotaxin-2 (P < 0.05) and p65 (P < 0.05) in NP after treatment. Poor responders to glucocorticoids showed higher expression of IL-1 beta (3.74 vs. 0.14; P < 0.005), ICAM-1 (1.91 vs. 0.29; P < 0.05) and p65 (0.70 vs. 0.16; P < 0.05) before treatment. Following treatment, IL-1 beta (4.18 vs. 0.42; P < 0.005) and GR-beta (0.95 vs. 0.28; P < 0.05) mRNA expression was higher in this group. Topical budesonide reduced the expression of TNF-alpha, eotaxin-2 and p65. Poor responders to topical budesonide exhibit higher levels of IL-1 beta, ICAM-1 and nuclear factor (NF)-kappa B at diagnosis and higher expression of both IL-1 beta and GR-beta after treatment. These results emphasize the anti-inflammatory action of topical budesonide at the molecular level and its importance in the treatment of NP. Nevertheless, IL-1 beta, ICAM-1 and NF-kappa B may be associated with primary resistance to glucocorticoids in NP, whereas higher expression of GR-beta in poor responders only after glucocorticoid treatment may represent a secondary drug resistance mechanism in this disease.
Resumo:
Background Imunoglobulin (Ig) and T cell receptor (TCR) gene rearrangements function as specific markers for minimal residual disease (MRD) which is one of the best predictors of outcome in childhood acute lymphoblastic leukemia (ALL) We recently reported on the prognostic value of MRD during the induction of remission through a simplified PCR method Here we report on gene rearrangement frequencies and offer guidelines for the application of the technique Procedure Two hundred thirty three children had DNA extracted from bone marrow Ig and TCR gene rearrangements were amplified using consensus primers and conventional PCR PCR products were submitted to homo/heteroduplex analysis A computer program was designed to define combinations of targets for clonal detection using a minimum set of primers and reactions Results At least one clonal marker could be detected in 98% of the patients and two markers in approximately 80% The most commonly rear ringed genes in precursor B cell ALL were IgH (75%) TCRD (59%) IgK (55%), and TCRG (54%) The most commonly rearranged genes for TALL were TCRG (100%) and TCRD (24%) The sensitivity of primers was limited to the detection of 1 leukemic cell among 100 normal cells Conclusions We propose that eight PCR reactions per ALL subtype would allow for the detection of two markers in most cases In addition these reactions ire suitable for MRD monitoring especially when aiming the selection of patients with high MRD levels (>= 10(-2)) at the end of induction therapy Such an approach would be very useful in centers with limited financial resources Pediatr Blood Cancer 2010 55 1278-1286 (C) 2010 Wiley Liss Inc
Resumo:
Proteomic approaches have been useful for the identification of aberrantly expressed proteins in complex diseases such as cancer. These proteins are not only potential disease biomarkers, but also targets for therapy. The aim of this study was to identify differentially expressed proteins in diffuse astrocytoma grade II, anaplastic astrocytoma grade III and glioblastoma multiforme grade IV in human tumor samples and in non-neoplastic brain tissue as control using 2-DE and MS. Tumor and control brain tissue dissection was guided by histological hematoxylin/eosin tissue sections to provide more than 90% of tumor cells and astrocytes. Six proteins were detected as up-regulated in higher grade astrocytomas and the most important finding was nucleophosmin (NPM) (p < 0.05), whereas four proteins were down-regulated, among them raf kinase inhibitor protein (RKIP) (p < 0.05). We report here for the first time the alteration of NPM and RKIP expression in brain cancer. Our focus on these proteins was due to the fact that they are involved in the PI3K/AKT/mTOR and RAS/RAF/MAPK pathways, known for their contribution to the development and progression of gliomas. The proteomic data for NPM and RKIP were confirmed by Western blot, quantitative real-time PCR and immunohistochemistry. Due to the participation of NPM and RKIP in uncontrolled proliferation and evasion of apoptosis, these proteins are likely targets for drug development.
Resumo:
Background. Increased activity of multidrug resistance (MDR) genes has been associated with treatment failure in acute leukemias, although with controversial reports. The objective of the present study was to assess the expression profile of the genes related to MDR: ABCB1, ABCC1, ABCC3, ABCC2, and LRP/MVP in terms of the clinical and biological variable and the survival of children with acute lymphoblastic leukemia (ALL). Procedure. The levels of mRNA expression of the drug resistance genes ABCB1, ABCC1, ABCC3, ABCG2, and LRP/MVP were analyzed by quantitative real-time PCR using the median Values as cut-off points, in consecutive samples from 140 children with ALL at diagnosis. Results. Expression levels of the ABCG2 gene in the patient group as a whole (P=0.05) and of the ABCG2 and ABCC1 genes in patients classified as being at high risk were associated with higher rates of 5-year event-free survival (EFS) (P=0.04 and P=0.01). Expression levels of the ABCG2 gene below the median were associated with a greater chance of death related to treatment toxicity for the patient group as a whole (P=0.009) and expression levels below the median of the ABCG2 and ABCC1 genes were associated with a greater chance of death due to treatment toxicity for the high-risk group (P=0.02 and P=0.03, respectively). Conclusion. The present data suggest a low participation of the drug efflux genes in treatment failure in patients with childhood ALL. However, the low expression of some of these genes may be associated with a higher death risk related to treatment toxicity. Pediatr Blood Cancer 2009;53:996-1004. (C) 2009 Wiley-Liss, Inc.
Resumo:
Myelodysplastic syndrome (MDS) is a rare hematological malignancy in children. It was performed FISH analysis in 19 pediatric MDS patients to investigate deletions involving the PPAR gamma and TP53 genes. Significant losses in the PPAR gamma gene and deletions in the tumor suppressor gene TP53 were observed in 17 and 18 cases, respectively. Using quantitative RT-PCR, it was detected PPAR gamma transcript downexpression in a subset of these cases. G-banding analysis revealed 17p deletions in a small number of these cases. One MDS therapy-related patient had neither a loss of PPAR gamma nor TP53. These data suggest that the PPAR gamma and TP53 genes may be candidates for molecular markers in pediatric MDS, and that these potentially recurrent deletions could contribute to the identification of therapeutic approaches in primary pediatric MDS. (C) 2008 Elsevier Ltd. All fights reserved.
Resumo:
This study evaluates the mRNA expression profile of genes TIMP1, TIMP2, MMP2 and MMP9 in diagnostic bone marrow samples from 134 consecutive ALL children by real-time quantitative PCR. A significant association was observed between higher expression levels of MMP9 and low risk group and absence of extramedullary infiltration and higher expression levels of TIMP2 and MMP2 with T-ALL. TIMP1 gene expression values higher than the median were associated with a significantly lower 5-year event free-survival in univariable (P = 0.04) and multivariable analysis (P = 0.01). Our data address new information in the complex interaction of the migration/adhesion genes and childhood ALL. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: To quantitatively evaluate changes induced by the application of a femoral blood-pressure cuff (BPC) on run-off magnetic resonance angiography (MRA). which is a method generally previously proposed to reduce venous contamination in the leg. Materials and Methods: This study was Health Insurance Portability and Accountability Act (HIPAA)- and Institutional Review Board (IRB)-compliant, We used time-resolved gradient-echo gadolinium (Gd)-enhanced MRA to measure BPC effects on arterial, venous, and soft-tissue enhancement. Seven healthy volunteers (six men) were studied with the BPC applied at the mid-femoral level unilaterally using a 1.5T MR system after intravenous injection of Gd-BOPTA. Different statistical tools were used such as the Wilcoxon signed rank test and a cubic smoothing spline fit. Results: We found that BPC application induces delayed venous filling (as previously described), but also induces significant decreases in arterial inflow, arterial enhancement, vascular-soft tissue contrast, and delayed peak enhancement (which have not been previously measured). Conclusion: The potential benefits from using a BPC for run-off MRA must be balanced against the potential pitfalls, elucidated by our findings.
Resumo:
Chorea-acanthocytosis (ChAc) is a rare autosomal recessive neurodegenerative disorder caused by loss of function mutations in the vacuolar protein sorting 13 homolog A (VPS13A) gene that encodes chorein. It is characterized by adult-onset chorea, peripheral acanthocytes, and neuropsychiatric symptoms. In the present study, we performed a comprehensive mutation screen, including sequencing and copy number variation (CNV) analysis, of the VPS13A gene in ChAc patients. All 73 exons and flanking regions of VPS13A were sequenced in 35 patients diagnosed with ChAc. To detect CNVs, we also performed real-time quantitative PCR and long-range PCR analyses for the VPS13A gene on patients in whom only a single heterozygous mutation was detected. We identified 36 pathogenic mutations, 20 of which were previously unreported, including two novel CNVs. In addition, we investigated the expression of chorein in 16 patients by Western blotting of erythrocyte ghosts. This demonstrated the complete absence of chorein in patients with pathogenic mutations. This comprehensive screen provides an accurate and useful method for the molecular diagnosis of ChAc. (C) 2011 Wiley-Liss, Inc.
Resumo:
Resistance to drug is a major cause of treatment failure in pediatric brain cancer. The multidrug resistance (MDR) phenotype can be mediated by the superfamily of adenosine triphosphate-binding cassette (ABC) transporters. The dynamics of expression of the MDR genes after exposure to chemotherapy, especially the comparison between pediatric brain tumors of different histology, is poorly described. To compare the expression profiles of the multidrug resistance genes ABCB1, ABCC1, and ABCG2 in different neuroepithelial pediatric brain tumor cell lines prior and following short-term culture with vinblastine. Immortalized lineages from pilocytic astrocytoma (R286), anaplasic astrocytoma (UW467), glioblastoma (SF188), and medulloblastoma (UW3) were exposed to vinblastine sulphate at different schedules (10 and 60 nM for 24 and 72 h). Relative amounts of mRNA expression were analyzed by real-time quantitative polymerase chain reaction. Protein expression was assessed by immunohistochemistry for ABCB1, ABCC1, and ABCG2. mRNA expression of ABCB1 increased together with augmenting concentration and time of exposure to vinblastine for R286, UW467, and UW3 cell lines. Interestingly, ABCB1 levels of expression diminished in SF188. Following chemotherapy, mRNA expression of ABCC1 decreased in all cell lines other than glioblastoma. ABCG2 expression was influenced by vinblastine only for UW3. The mRNA levels showed consistent association to protein expression in the selected sets of cell lines analyzed. The pediatric glioblastoma cell line SF188 shows different pattern of expression of multidrug resistance genes when exposed to vinblastine. These preliminary findings may be useful in determining novel strategies of treatment for neuroepithelial pediatric brain tumors.