146 resultados para Optimal reactive source expansion
Resumo:
Objective: To evaluate the effect of rapid maxillary expansion (RME) on the dimension of the nasopharyngeal space and its relation to nasal airway resistance. Methods: Twenty-five school-age children (from 7 to 10 year-old) with mouth and/or mixed breathing, with mixed dentition and uni- or bilateral posterior crossbite involving the deciduous canines and the first permanent molars, were evaluated. RME was placed and remained during 90 days. Rhinomanometry and orthodontic documentation were performed at four different times, i.e., before (T(1)), immediately after (T(2)), 90 days (T(3)) and 30 months (T(4)) after RME. Results: Differences in nasopharyngeal area and in nasal airway resistance were observed only 30 months after RME, and could be explained by facial growth, and not because of the orthodontic procedure. Conclusion: RME does not influence on nasopharyngeal area or nasal airway resistance in long-term evaluation. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background: Rapid maxillary expansion (RME) may improve the nasal respiratory pattern This study was performed to evaluate the effect of RME on the nasal cavity by acoustic rhinometry and computed rhinomanometry and to determine nasal and maxillary width by posteroanterior cephalometric radiography, up to 30 months after the orthodontic procedure Methods: Twenty-seven children with oral breathing, ranging in age from 7 to 70 years, and with mixed dentition were selected The children had unior bilateral posterior crossbite involving deciduous canines and the first permanent molars All subjects were submitted to nasofibroscopy, acoustic rhinometry, and computed rhinomanometry and posteroanterior cephalometric radiography at four different tunes, i e, before expansion, immediately, 90 days and 30 months after expansion Results: The mean linear left-to-right nasal cavity lateral prominence and left-to-right jugal ponds cephalometric measures increased considerably after expansion and this increase was maintained throughout the period of evaluation There was an immediate significant decrease in nasal resistance, up to 90 days after RME, but the nasal resistance increased 30 months after the procedure The acoustic rhinometry results did not show any difference in values throughout time Conclusion: RME significantly increased nasal and maxillary width as measured by frontal cephalometry, but the nasal mucosal effects were more subtle Also, the influence of RME on nasal resistance was not stable, and nasal resistance values returned to close to the initial ones after 30 months (Am J Rhinol Allergy 24, 161-165, 2010, doi 10.2500/ajra.2010.24.3440)
Resumo:
Methionine-choline-deficient diet represents a model for the study of the pathogenesis of steatohepatitis. Male rats were divided into three groups, the first group receiving a control diet and the other two groups receiving a methionine-choline-deficient diet for 1 month (MCD1) and for 2 months (MCD2), respectively. The livers of the animals were collected for the determination of vitamin E, thiobarbituric acid reactive substances (TBARS), GSH concentration, DNA damages, and for histopathological evaluation. The hepatic TBARS and GSH content was higher (P < 0.05) in the groups receiving the experimental diet (MCD1 and MCD2) compared to control diet, and hepatic vitamin E concentration differed (P < 0.05) between the MCD1 and MCD2 groups, with the MCD2 group presenting a lower concentration. Damage to hepatocyte DNA was greater (P < 0.05) in the MCD2 group (262.80 DNA injuries/100 hepatocytes) compared to MCD1 (136.4 DNA injuries/100 hepatocytes) and control diet (115.83 DNA injuries/100 hepatocytes). Liver histopathological evaluation showed that steatosis, present in experimental groups was micro- and macro-vesicular and concentrated around the centrolobular vein, zone 3, with preservation of the portal space. The inflammatory infiltrate was predominantly periductal and the steatosis and inflammatory infiltrate was similar in the MCD1 and MCD2 groups, although the presence of Mallory bodies was greater in the MCD2 group. The study describes the contribution of a methionine-choline-deficient diet to the progression of steatosis, lipid peroxidation and hepatic DNA damage in rats, serving as a point of reflection about the role of these nutrients in the western diet and the elevated non-alcoholic steatohepatitis rates in humans.
Resumo:
Purpose: Eicosapentaenoic acid has been tested in bladder cancer as a synergistic cytotoxic agent in the form of meglumine-eicosapentaenoic acid, although its mechanism of action is poorly understood in this cancer. The current study analyzed the mechanisms by which eicosapentaenoic acid alters T24/83 human bladder cancer metabolism in vitro. Materials and Methods: T24/83 human bladder cancer cells were exposed to eicosapentaenoic acid for 6 to 24 hours in vitro and incorporation profiles were determined. Effects on membrane phospholipid incorporation, energy metabolism, mitochondrial activity, cell proliferation and apoptosis were analyzed Reactive oxygen species and lipid peroxide production were also determined. Results: Eicosapentaenoic acid was readily incorporated into membrane phospholipids with a considerable amount present in mitochondrial cardiolipin. Energy metabolism was significantly altered by eicosapentaenoic acid, accompanied by decreased mitochondrial membrane potential, and increased lipid peroxide and reactive oxygen species generation. Subsequently caspase-3 activation and apoptosis were detected in eicosapentaenoic acid exposed cells, leading to decreased cell numbers. Conclusions: These findings confirm that eicosapentaenoic acid is a potent cytotoxic agent in bladder cancer cells and provide important insight into the mechanisms by which eicosapentaenoic acid causes these changes. The changes in membrane composition that can occur with eicosapentaenoic acid likely contribute to the enhanced drug cytotoxicity reported previously in meglumine-eicosapentaenoic acid/epirubicin/mitomycin studies. Dietary manipulation of the cardiolipin fatty acid composition may provide an additional method for stimulating cell death in bladder cancer. In vivo studies using intravesical and dietary manipulation of fatty acid metabolism in bladder cancer merit further attention.
Resumo:
Menadione is a naphthoquinone used as a vitamin K source in animal feed that can generate reactive oxygen species (ROS) and cause apoptosis. Here, we examined whether menadione reduces development of preimplantation bovine embryos in a ROS-dependent process and tested the hypothesis that actions of menadione would be reduced by insulin-like growth factor-1 (IGF-1). Menadione caused a concentration-dependent decrease in the proportion of embryos that became blastocysts. All concentrations tested (1, 2.5, and 5.0 mu M) inhibited development. Treatment with 100 ng/ml IGF-1 reduced the magnitude of the anti-developmental effects of the two lowest menadione concentrations. Menadione also caused a concentration-dependent increase in the percent of cells positive for the TUNEL reaction. The response was lower for IGF-1-treated embryos. The effects of menadione were mediated by ROS because (1) the anti-developmental effect of menadione was blocked by the antioxidants dithiothreitol and Trolox and (2) menadione caused an increase in ROS generation. Treatment with IGF-1 did not reduce ROS formation in menadione-treated embryos. In conclusion, concentrations of menadione as low as 1.0 mu M can compromise development of bovine preimplantation embryos to the blastocyst stage of development in a ROS-dependent mechanism. Anti-developmental actions of menadione can be blocked by IGF-1 through effects downstream of ROS generation.
Resumo:
Our long-term objective is to devise reliable methods to generate biological replacement teeth exhibiting the physical properties and functions of naturally formed human teeth. Previously, we demonstrated the successful use of tissue engineering approaches to generate small, bioengineered tooth crowns from harvested pig and rat postnatal dental stem cells (DSCs). To facilitate characterizations of human DSCs, we have developed a novel radiographic staging system to accurately correlate human third molar tooth developmental stage with anticipated harvested DSC yield. Our results demonstrated that DSC yields were higher in less developed teeth (Stages 1 and 2), and lower in more developed teeth (Stages 3, 4, and 5). The greatest cell yields and colony-forming units (CFUs) capability was obtained from Stages 1 and 2 tooth dental pulp. We conclude that radiographic developmental staging can be used to accurately assess the utility of harvested human teeth for future dental tissue engineering applications.
Resumo:
Establishment of a treatment plan is based on efficacy and easy application by the clinician, and acceptance by the patient. Treatment of adult patients with Class III malocclusion might require orthognathic surgery, especially when the deformity is severe, with a significant impact on facial esthetics. Impacted teeth can remarkably influence treatment planning, which should be precise and concise to allow a reasonably short treatment time with low biologic cost. We report here the case of a 20-year-old man who had a skeletal Class III malocclusion and impaction of the maxillary right canine, leading to remarkable deviation of the maxillary midline; this was his chief complaint. Because of the severely deviated position of the impacted canine, treatment included extraction of the maxillary right canine and left first premolar for midline correction followed by leveling, alignment, correction of compensatory tooth positioning, and orthognathic surgery to correct the skeletal Class III malocclusion because of the severe maxillary deficiency. This treatment approach allowed correction of the maxillary dental midline discrepancy to the midsagittal plane and establishment of good occlusion and optimal esthetics. (Am J Orthod Dentofacial Orthop 2010;137:840-9)
Resumo:
Introduction: The purpose of this retrospective study was to compare the long-term stability of maxillary incisor alignment in patients treated with and without rapid maxillary expansion (RME). Methods: The sample comprised 48 subjects with Class I and Class II malocclusions, treated without extractions with fixed edgewise appliances, divided into 2 groups according to the treatment protocol: group 1 comprised 25 patients (15 girls, 10 boys) at a mean initial age of 13.53 years (SD, 1.63), who had RME during orthodontic treatment. Group 2 comprised 23 patients (13 girls, 10 boys) at a mean initial age of 13.36 years (SD, 1.81 years), treated with fixed appliances without RME. Maxillary dental cast measurements were obtained at the pretreatment, posttreatment, and long-term posttreatment stages. Variables assessed were the irregularity index and maxillary arch dimensions. Intergroup comparisons were made with independent t tests. Results: Greater transverse increases were found during treatment in the group treated with RME. However, during the long-term posttreatment period, no significant difference was observed in the amount of incisor crowding relapse between the groups. Conclusions: RME did not influence long-term maxillary anterior alignment stability. (Am J Orthod Dentofacial Orthop 2010; 137: 164. e1-164.e6)
Resumo:
The objective of the current study was to characterize the internal nasal dimensions of children with repaired cleft lip and palate and transverse maxillary deficiency, using acoustic rhinometry and analyze the changes caused by rapid maxillary expansion (RME). A convenience sampling of 19 cleft lip and palate individuals, aged 14 to 18 years, of both sexes, previously submitted to primary surgeries and referred for RME were analyzed prospectively at the Hospital for Rehabilitation of Craniofacial Anomalies, University of Sao Paulo, Bauru, Sao Paulo, Brazil. All patients underwent acoustic rhinometry before installation of the expansor and at 30 and 180 days after the active expansion phase. Nasal cross-sectional areas and volumes corresponding to the nasal valve (CSA(1) and V(1)) and the turbinates (CSA(2), CSA(3), and V(2)) regions were determined before and after nasal decongestion. Rapid maxillary expansion led to a statistically significant increase (P < 0.05) in mean CSA(1), CSA(2), V(1), and V(2) (without nasal decongestion) and in CSA(1) and V(1) (with decongestion) in the group as a whole. Individual data analysis showed that 58% of the patients responded positively to RME, with an average increase in CSA(1) of 26% (with decongestion), whereas 37% of the patients had no significant change. Only 1 patient (5%) showed a decrease. The findings contribute toward the characterization of nasal deformities determined by the cleft and demonstrate the positive effect RME had on nasal morphophysiology in a significant number of the patients who underwent this procedure.
Resumo:
A correlation between pain sensation and neuronal c-fos expression has been analyzed following experimental rapid maxillar expansion (RME). Adult male Wistar rats were anaesthetized and divided into three groups: animals that received an orthodontic apparatus, which was immediately removed after the insertion (control), animals that received an inactivated orthodontic apparatus (without force), and animals that received an orthodontic apparatus previously activated (140 g force). After 6, 24, 48, or 72 h, the animals were re-anaesthetized, and perfused with 4% paraformaldehyde. The brains were removed, fixed, and sections containing brain structures related to nociception were processed for Fos protein immunohistochemistry (IHC). The insertion of the orthodontic apparatus with 140 g was able to cause RME that could be seen by radiography. The IHC results showed that the number of activated neurons in the different nuclei changed according to the duration of appliance insertion and followed a temporal pattern similar to that of sensations described in clinics. The animals that received the orthodontic apparatus without force did not show RME but a smaller c-fos expression in the same brain structures. In conclusion, we demonstrate that orthodontic force used for palate disjunction activates brain structures that are related to nociception, and that this activation is related to the pain sensation described during orthodontic treatment. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
The aim of this study was to determine whether para-chloroaniline (PCA) and/or reactive oxygen species (ROS) are generated by chlorhexidine (CHX) alone or after CHX is mixed with calcium hydroxide at different time points. Mass spectrometry was performed to detect PCA in samples of 0.2% CHX and Ca(OH)2 mixed with 0.2% CHX. High-performance liquid chromatography was used to confirm the presence of CHX in the mixture with Ca(OH)2. The samples were analyzed immediately after mixing and after 7 and 14 days. During the intervals of the experiment, the samples were maintained at 36.5 degrees C and 95% relative humidity. PCA was detected in the 0.2% CHX solution after 14 days. The mixture of CHX with Ca(CH)2 liberated ROS at all time points, but no traces of CHX were present in the mixture as a result of immediate degradation of the CHX. (J Endod 2008;34:1508-1514)