149 resultados para Molecular absorption Spectrophotometry in the ultraviolet-visible
Resumo:
Trichophyton rubrum is the most common etiological agent of human dermatophytosis. Despite the incidence and medical importance of this dermatophyte, little is known about the mechanisms of host invasion and pathogenicity. Host invasion depends on the adaptive cellular responses of the pathogen that allow it to penetrate the skin layers, which are mainly composed of proteins and lipids. In this study, we used suppression subtractive hybridization to identify transcripts over-expressed in T rubrum cultured in lipid as carbon source. Among the subtractive cDNA clones isolated, 85 clones were positively screened by cDNA array dot blotting and were sequenced. The putative proteins encoded by the isolated transcripts showed similarities to fungal proteins involved in metabolism, signaling, defense, and virulence, such as the MDR/ABC transporter, glucan 1,3-beta-glucosidase, chitin synthase B, copper-sulfate-regulated protein, and serine/threonine phosphatase (calcineurin A). These results provide the first molecular insight into the genes differentially expressed during the adaptation of T. rubrum to a lipidic carbon source.
Resumo:
Objective: To analyze the expression of the glycodelin gene to better understand the molecular environment of endometriotic lesions and to elucidate the potential mechanisms that underlie the complex physiopathology of endometriosis. Design: Prospective laboratory study. Setting: University hospital. Patient(s): Eleven healthy fertile women and 17 patients with endometriosis in the early proliferative phase of the menstrual cycle. Intervention(s): Endometrial biopsy specimens were obtained from the endometrium of healthy women without endometriosis (controls) and from eutopic and ectopic endometrium tissues (pelvic and ovarian endometriotic implants) of endometriosis patients. Main Outcome Measure(s): The glycodelin relative expression level by real-time polymerase chain reaction (PCR) analysis. Result(s): The glycodelin down-regulation found in the endometriotic lesions was 332.26 and 123.17-fold lower, respectively, when compared with the eutopic tissue and the control endometrium. Conclusion(s): Glycodelin may be one of the molecules that contributes to the loss of cellular homeostasis in endometriotic lesions. (Fertil Steril (R) 2009;91:1676-80. (C)2009 by American Society for Reproductive Medicine.)
Resumo:
Objective: Cannabidiol is a chemical constituent from Cannabis sativa and it has multiple mechanisms of action, including antidepressant effects. The main objective of the present study was to evaluate behavioural and molecular effects induced by administration of cannabidiol and imipramine in rats. Methods: In the present study, rats were acutely or chronically treated for 14 days once a day with saline, cannabidiol (15, 30 and 60 mg/kg) or imipramine (30 mg/kg) and the animals behaviour was assessed in forced swimming and open-field tests. Afterwards, the prefrontal cortex, hippocampus and amygdala brain-derived neurotrophic factor (BDNF) levels were assessed by enzyme-linked immunosorbent sandwich assay. Results: We observed that both acute and chronic treatments with imipramine at the dose of 30 mg/kg and cannabidiol at the dose of 30 mg/kg reduced immobility time and increased swimming time; climbing time was increased only with imipramine at the dose of 30 mg/kg, without affecting locomotor activity. In addition, chronic treatment with cannabidiol at the dose of 15 mg/kg and imipramine at the dose of 30 mg/kg increased BDNF levels in the rat amygdala. Conclusion: In conclusion, our results indicate that cannabidiol has an antidepressant-like profile and could be a new pharmacological target for the treatment of major depression.
Resumo:
Polymorphic variations of several genes associated with dietary effects and exposure to environmental carcinogens may influence susceptibility to leukemia development. The objective of the present study was to evaluate the effect of the polymorphisms of debrisoquine hydroxylase (CYP2D6), epoxide hydrolase (EPHX1), myeloperoxidase (MPO), and quinone-oxoreductase (NQO1), which have been implicated in xenobiotic metabolism, on the risk of childhood acute lymphoblastic leukemia (ALL). We evaluated the frequency of polymorphisms in the CYP2D6 (*3 and *4), EPHX1 (*2 and *3), MPO (*2), and NQO1 (*2) genes in 206 patients with childhood ALL and in 364 healthy individuals matched for age and gender from a Brazilian population separated by ethnicity (European ancestry and African ancestry), using the PCR-RFLP method. The CYP2D6 polymorphism variants were associated with an increased risk of ALL. The EPHX1, NQO1, and MPO variant genotypes were significantly associated with a reduced risk of childhood ALL. A significantly stronger protective effect is observed when the EPHX1, NQO1, and MPO variant genotypes are combined suggesting that, CYP2D6 polymorphisms may play a role in the susceptibility to pediatric ALL, whereas the EPHX1, NQO1, and MPO polymorphisms might have a protective function against leukemogenesis. Environ. Mal. Mulagen. 51:48-56, 2010. (C) 2009 Wiley-Liss, Inc.
Resumo:
Myelodysplastic syndrome (MDS) is a rare hematological malignancy in children. It was performed FISH analysis in 19 pediatric MDS patients to investigate deletions involving the PPAR gamma and TP53 genes. Significant losses in the PPAR gamma gene and deletions in the tumor suppressor gene TP53 were observed in 17 and 18 cases, respectively. Using quantitative RT-PCR, it was detected PPAR gamma transcript downexpression in a subset of these cases. G-banding analysis revealed 17p deletions in a small number of these cases. One MDS therapy-related patient had neither a loss of PPAR gamma nor TP53. These data suggest that the PPAR gamma and TP53 genes may be candidates for molecular markers in pediatric MDS, and that these potentially recurrent deletions could contribute to the identification of therapeutic approaches in primary pediatric MDS. (C) 2008 Elsevier Ltd. All fights reserved.
Resumo:
The differential diagnosis of renal tumors, particularly in adolescents, may be challenging. We describe an 11-year-old female with a primary intra-renal mass. Initial differential diagnoses included primitive neuroectodermal tumor (PNET), desmoplastic small round cell tumor (DSRCT), and Wilms Turner (WT). Extensive pathologic and molecular analysis on initial and relapsed tumor samples confirmed WT. The EWS-WTI and EWS-FL11 rearrange-merits, distinctive of DSRCT and PNET were negative. The differential diagnosis on monophasic blastemal WT may be complex. Primary renal DSRCT and MET have been rarely described. Nevertheless, molecular confirmation for these rare conditions may be necessary in selected cases. Pediatr Blood Cancer 2010;54:3 19-321. (C) 2009 Wiley-Liss, Inc.
Resumo:
Chorea-acanthocytosis (ChAc) is a rare autosomal recessive neurodegenerative disorder caused by loss of function mutations in the vacuolar protein sorting 13 homolog A (VPS13A) gene that encodes chorein. It is characterized by adult-onset chorea, peripheral acanthocytes, and neuropsychiatric symptoms. In the present study, we performed a comprehensive mutation screen, including sequencing and copy number variation (CNV) analysis, of the VPS13A gene in ChAc patients. All 73 exons and flanking regions of VPS13A were sequenced in 35 patients diagnosed with ChAc. To detect CNVs, we also performed real-time quantitative PCR and long-range PCR analyses for the VPS13A gene on patients in whom only a single heterozygous mutation was detected. We identified 36 pathogenic mutations, 20 of which were previously unreported, including two novel CNVs. In addition, we investigated the expression of chorein in 16 patients by Western blotting of erythrocyte ghosts. This demonstrated the complete absence of chorein in patients with pathogenic mutations. This comprehensive screen provides an accurate and useful method for the molecular diagnosis of ChAc. (C) 2011 Wiley-Liss, Inc.
Resumo:
Farnesoic acid O-methyl transferase (FAMeT) is the enzyme that catalyzes the formation of methyl farnesoate (MF) from farnesoic acid (FA) in the biosynthetic pathway of juvenile hormone (JH). This work reports the cloning, sequencing, and expression of FAMeT gene from the stingless bee Melipona scutellaris (MsFAMeT). The MsFAMeT in silica analysis showed that greatest sequence similarity is found in Apis mellifera and other insects, while relatively less similarity is shown in crustaceans. Evidence of alternative splicing of a 27 nucleotide (nt) microexon explains the presence of the detected isoforms, 1 and 2. The expression analysis of the two isoforms showed a marked difference when castes were compared, suggesting that they could be involved differently in the JH metabolism in M. scutellaris, providing new insights for the comprehension of female plasticity.
Resumo:
Hemophilia A is an X-linked, inherited, bleeding disorder caused by the partial or total inactivity of the coagulation factor VIII (FVIII). Due to difficulties in the direct recognition of the disease-associated mutation in the F8 gene, indirect diagnosis using polymorphic markers located inside or close to the gene is used as an alternative for determining the segregation of the mutant gene within families and thus for detecting carrier individuals and/or assisting in prenatal diagnosis. This study characterizes the allelic and haplotype frequencies, genetic diversity, population differentiation and linkage disequilibrium of five microsatellites (F8Int1, F8Int13, F8Int22, F8Int25.3 and IKBKG) in samples of healthy individuals from Sao Paulo, Rio Grande do Sul and Pernambuco and of patients from Sao Paulo with haemophilia A to determine the degree of informativeness of these microsatellites for diagnostic purposes. The interpopulational diversity parameters highlight the differences among the analyzed population samples. Regional differences in allelic frequencies must be taken into account when conducting indirect diagnosis of haemophilia A. With the exception of IKBKG, all of the microsatellites presented high heterozygosity levels. Using the markers described, diagnosis was possible in 10 of 11 families. The F8Int22, F8Int1, F8Int13, F8Int25.3 and IKBKG microsatellites were informative in seven, six, five and two of the cases, respectively, demonstrating the effectiveness of using these microsatellites in prenatal diagnosis and in carrier identification in the Brazilian population.
Resumo:
Gene expression of peripheral tissue antigens (PTAs) in stromal medullary thymic epithelial cells (mTECs) is a key process to the negative selection of autoreactive thymocytes. This phenomenon was termed ""promiscuous gene expression"" (PGE), which is partially controlled by the Aire gene. Nevertheless, reasons for the correlation of Aire and PTAs with the emergence of autoimmune diseases are largely unknown, though it may be a result of a chronological effect. Although the effect of Aire mutations in pathogenic autoimmunity is well know, it could not be a unique cause for autoimmunity. Independently of mutations, temporal deregulation of Aire expression may imbalance Aire-dependent PTAs and/or wide PGE. This deregulation may be an early warning sign for autoimmune diseases as it guarantees autoantigen representation in the thymus. To assess this hypothesis, we studied the expression levels of Aire, Aire-dependent (Ins2) and Aire-independent (Gad67 and Col2a1) PTAs using real-time-PCR of the thymic stromal cells of NOD mice during the development of autoimmune type 1 diabetes mellitus (DM-1). Wide PGE was studied by microarrays in which the PTA genes were identified through parallel CD80(+) mTEC 3.10 cell line expression profiling. The results show that Aire gene was down-regulated in young pre-autoimmune (pre-diabetic) NOD mice. PGE and specific PTA genes were down-regulated in adult autoimmune diabetic animals. These findings represent evidence indicating that chronological deregulation of genes important to negative selection may be associated with the development of an autoimmune disease (DM-1) in mice.
Resumo:
There is evidence that several fibroblast growth factors (FGFs) are involved in growth and development of the corpus luteum (CL), but many FGFs have not been investigated in this tissue, including FGF10. The objective of this study was to determine if FGF10 and its receptor (FGFR2B) are expressed in the CL. Bovine CL were collected from an abattoir and classed as corpus hemorrhagica (stage 1), developing (stage 11), developed (stage 111), and regressed (stage IV) CL. Expression of FGF10 and FGFR2B mRNA was measured by reverse transcription-polymerase chain reaction (RT-PCR). Both genes were expressed in bovine CL, and FGF10 expression did not differ between stages of CL development. FGF10 protein was localized to large and small luteal cells by immunohistochemistry. FGFR2B expression was approximately threefold higher in regressed compared to developing and developed CL (P < 0.05). To determine if FGF10 and FGFR2B expression is regulated during functional luteolysis, cattle were injected with PGF2 alpha and CL collected at 0, 0.5, 2, 4, 12, 24, 48, and 64 hr thereafter (n = 5 CL/time point), and mRNA abundance was measured by real-time RT-PCR. FGF10 mRNA expression did not change during functional luteolysis, whereas FGFR2B mRNA abundance decreased significantly at 2, 4, and 12 hr after PGF2a, and returned to pretreatment levels for the period 24-64 hr post-PGF2 alpha. These data suggest a potential role for FGFR2B signaling during structural luteolysis in bovine CL.
Resumo:
Blood samples collected from 201 humans, 92 dogs, and 27 horses in the state of Espirito Santo, Brazil, were tested by polymerase chain reaction, indirect immunofluorescence assays, and indirect enzyme-linked immunosorbent assay for tick-borne diseases (rickettsiosis, ehrlichiosis, anaplasmosis, borreliosis, babesiosis). Our results indicated that the surveyed counties are endemic for spotted fever group rickettsiosis because sera from 70 (34.8%) humans, 7 (7.6%) dogs, and 7 (25.9%) horses were reactive to at least one of the six Rickettsia species tested. Although there was evidence of ehrlichiosis (Ehrlichia canis) and babesiosis (Babesia cams vogeli, Theileria equi) in domestic animals, no human was positive for babesiosis and only four individuals were serologically positive for E. canis. Borrelia burgdorferi-serologic reactive sera were rare among humans and horses, but encompassed 51% of the canine samples, suggesting that dogs and their ticks can be part of the epidemiological cycle of the causative agent of the Brazilian zoonosis, named Baggio-Yoshinari Syndrome.
Resumo:
The periaqueductal gray (PAG) has been reported as a potential site for opioid regulation of behavioral selection. Opioid-mediated behavioral and physiological responses differ between nulliparous and multiparous females. This study addresses the effects of multiple reproductive experiences on mu-, kappa- and delta-opioid receptor (Oprm1, Oprk1, and Oprd1 respectively) gene activity and mu, kappa and delta protein expression (MOR, KOR and DOR respectively) in the PAG of the female rats. This was done by evaluating the opioid gene expression using real-time (RT-PCR) and quantification of each protein receptor by Western blot analysis. The RT-PCR results show that multiple reproductive experiences increase Oprm1 and Oprk1 gene expression. Western blot analysis revealed increased MOR and KOR while DOR protein was decreased in multiparous animals. Taken together, these data suggest that multiple reproductive experiences influence both gene activity and opioid receptor expression in the PAG. Post-translational mechanisms seem particularly relevant for DOR expression. Thus, opioid transmission in the PAG might be modulated by different mechanisms of multiparity-induced plasticity according to the opioid receptor type.
Resumo:
Diabetes has been implicated in the dryness of the mouth, loss of taste sensation, sialosis, and other disorders of the oral cavity, by impairment of the salivary glands. The aim of the present study was to examine the plasma membrane, microsomal, and homogenate Ca(2+)-ATPase activity in the rat submandibular and parotid salivary glands of streptozotocin-induced diabetes. We have also examined the influence of the acidosis state oil this parameter. Diabetes was induced by an intraperitoneal injection of streptozotocin and acidosis was induced by daily injection of NH(4)Cl. At 15 and 30 days after diabetes induction, the animals were euthanized and the submandibular and parotid salivary glands were removed and analyzed. Ca(2+)-ATPase (total, independent, and dependent) was determined in the homo-enate, microsomal, and plasma membranes of the salivary glands of diabetic and control rats. Calcium concentration was also determined in the glands and showed to be hi-her in the diabetic animals. Ca(2+)-ATPase activity was found to be reduced in all cell fractions studied in the diabetic animals compared with control. Similar results were obtained for the submandibular salivary glands of acidotic animals; however in the parotid salivary glands it was found an increase in the enzyme activity. Copyright (c) 2009 John Wiley & Sons, Ltd.