344 resultados para Jorge, Lidia
Resumo:
Thermal action on timber causes it to degrade through combustion of its chemical components, which leads to the release of vapors, combustible gases and surface char. This diminishes its load capacity, due to the reduction of its cross section by charring and to changes in its mechanical properties of strength and stiffness as a function of its exposure to high temperatures. This paper reports the charring rates observed on Eucalyptus structural beams and presents a numerical and experimental study of the behavior of these beams when exposed to fire, in which the properties of strength and stiffness were evaluated as a function of rising temperatures, allowing an analysis of the effect of the section factor on the internal rise in temperature of structural Eucalyptus beams.
Resumo:
An experimental testing program was undertaken to investigate failure mechanisms induced by the active movement of a deep rectangular trapdoor underlying a granular soil. Reduced-scale models were tested under normal gravity as well as under an increased gravitational field using a centrifuge facility. Some models were used to evaluate the performance of both flexible and rigid pipes undergoing a localized loss of support. Failure mechanisms in the longitudinal direction of the models were characterized by a single, well-defined failure surface that developed within the limits of the trapdoor. However, failure mechanisms in the transverse direction of the models were characterized by multiple failure surfaces extending outside the limits of the trapdoor. Significant dilation of the soil located immediately above the trapdoor was identified in the failure of the models. The pattern of the failure mechanisms was found to be affected by the stress level and backfill density. Higher stress levels were found to lead to well-developed failure zones. The influence of backfill density was found to be more relevant in models involving flexible pipes. Pipes embedded within loose backfill were severely damaged after loss of support, while pipes embedded in dense backfill experienced negligible deformations. These results indicate that damage to pipelines caused by ground loss of support can be significantly minimized by controlling the compaction of the fill.
Resumo:
The main objective of this work was to investigate three packing materials (polyurethane foam, sugar-cane bagasse, and coconut fibre) for biofiltration of a gaseous mixture containing hydrogen sulphide (H(2)S). Mixed cultures were obtained from two sources, aerated submerged biofilters and activated sludge, and were utilised as inoculums. Biofilters reached 100% removal efficiency after two clays of operation. The empty bed residence time was 495 for each of the biofilters. The reactors were operated simultaneously, and the inlet concentrations of H(2)S varied between 184 and 644 ppmv during the long-term continuous operation of the biofilters (100 clays). Average removal efficiencies remained above 99.3%, taking into consideration the entire period of operation. Average elimination capacities reached by the biofilters packed with polyurethane foam, coconut fibre, and sugarcane bagasse were in the range of 17.8-66.6; 18.9-68.8, and 18.7-72.9g m(-3) h(-1), respectively. Finally, we concluded that the packing materials tested in this work are appropriate for the long-term biofiltration of hydrogen sulphide. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The groundwater recharge and water fluxes of the Guarani Aquifer System in the state of Sao Paulo in Brazil were assessed through a numeric model. The study area (6,748 km(2)) comprises Jacar,-Gua double dagger A(0) and Jacar,-Pepira River watersheds, tributaries of the Tiet River in the central region of the state. GIS based tools were used in the storage, processing and analysis of data. Main hydrologic phenomena were selected, leading to a groundwater conceptual model, taking into account the significant outcrops occurring in the study area. Six recharge zones were related to the geologic formation and structures of the semi-confined and phreatic aquifer. The model was calibrated against the baseflows and static water levels of the wells. The results emphasize the strong interaction of groundwater flows between watersheds and the groundwater inflow into the rivers. It has been concluded that lateral groundwater exchanges between basins, the deep discharges to the regional system, and well exploitation were not significant aquifer outflows when compared to the aquifer recharge. The results have shown that the inflows from the river into the aquifer are significant and have the utmost importance since the aquifer is potentially more vulnerable in these places.
Resumo:
The characterization of a coffee gene encoding a protein similar to miraculin-like proteins, which are members of the plant Kunitz serine trypsin inhibitor (STI) family of proteinase inhibitors (PIs), is described. PIs are important proteins in plant defence against insects and in the regulation of proteolysis during plant development. This gene has high identity with the Richadella dulcifica taste-modifying protein miraculin and with the tomato protein LeMir; and was named as CoMir (Coffea miraculin). Structural protein modelling indicated that CoMir had structural similarities with the Kunitz STI proteins, but suggested specific folding structures. CoMir was up-regulated after coffee leaf miner (Leucoptera coffella) oviposition in resistant plants of a progeny derived from crosses between C. racemosa (resistant) and C. arabica (susceptible). Interestingly, this gene was down-regulated during coffee leaf miner herbivory in susceptible plants. CoMir expression was up-regulated after abscisic acid application and wounding stress and was prominent during the early stages of flower and fruit development. In situ hybridization revealed that CoMir transcripts accumulated in the anther tissues that display programmed cell death (tapetum, endothecium and stomium) and in the metaxylem vessels of the petals, stigma and leaves. In addition, the recombinant protein CoMir shows inhibitory activity against trypsin. According to the present results CoMir may act in proteolytic regulation during coffee development and in the defence against L. coffeella. The similarity of CoMir with other Kunitz STI proteins and the role of CoMir in plant development and plant stress are discussed.
Resumo:
In the present paper the dynamic solutions of two non-steady seepage problems are discussed. It is shown that the acceleration term in the equation of motion is important for a correct qualitative description of the flow.
Resumo:
Although the Hertz theory is not applicable in the analysis of the indentation of elastic-plastic materials, it is common practice to incorporate the concept of indenter/specimen combined modulus to consider indenter deformation. The appropriateness was assessed of the use of reduced modulus to incorporate the effect of indenter deformation in the analysis of the indentation with spherical indenters. The analysis based on finite element simulations considered four values of the ratio of the indented material elastic modulus to that of the diamond indenter, E/E(i) (0, 0.04, 0.19, 0.39), four values of the ratio of the elastic reduced modulus to the initial yield strength, E(r)/Y (0, 10, 20, 100), and two values of the ratio of the indenter radius to maximum total displacement, R/delta(max) (3, 10). Indenter deformation effects are better accounted for by the reduced modulus if the indented material behaves entirely elastically. In this case, identical load-displacement (P - delta) curves are obtained with rigid and elastic spherical indenters for the same elastic reduced modulus. Changes in the ratio E/E(i), from 0 to 0.39, resulted in variations lower than 5% for the load dimensionless functions, lower than 3% in the contact area, A(c), and lower than 5% in the ratio H/E(r). However, deformations of the elastic indenter made the actual radius of contact change, even in the indentation of elastic materials. Even though the load dimensionless functions showed only a little increase with the ratio E/E(i), the hardening coefficient and the yield strength could be slightly overestimated when algorithms based on rigid indenters are used. For the unloading curves, the ratio delta(e)/delta(max), where delta(e) is the point corresponding to zero load of a straight line with slope S from the point (P(max), delta(max)), varied less than 5% with the ratio E/E(i). Similarly, the relationship between reduced modulus and the unloading indentation curve, expressed by Sneddon`s equation, did not reveal the necessity of correction with the ratio E/E(i). The most affected parameter in the indentation curve, as a consequence of the indentation deformation, was the ratio between the residual indentation depth after complete unloading and the maximum indenter displacement, delta(r)/delta(max) (up to 26%), but this variation did not significantly decrease the capability to estimate hardness and elastic modulus based on the ratio of the residual indentation depth to maximum indentation depth, h(r)/h(max). In general, the results confirm the convenience of the use of the reduced modulus in the spherical instrumented indentation tests.
Resumo:
This work examines the extraction of mechanical properties from instrumented indentation P-h(s) curves via extensive three-dimensional finite element analyses for pyramidal tips in a wide range of solids under frictional and frictionless contact conditions. Since the topography of the imprint changes with the level of pile-up or sink-in, a relationship is identified between correction factor beta in the elastic equation for the unloading indentation stage and the amount of surface deformation effects. It is shown that the presumption of a constant beta significantly affects mechanical property extractions. Consequently, a new best-fit function is found for the correlation between penetration depth ratios h(e)/h(max), h(r)/h(max) and n, circumventing the need for the assumption of a constant value for beta, made in our prior investigation [Acta Mater. 53 (2005) pp. 3545-3561]. Simulations under frictional contact conditions provide sensible boundaries for the influence of friction on both h(e)/h(max) and h(r)/h(max). Friction is essentially found to induce an overestimation in the inferred n. Instrumented indentation experiments are also performed in three archetypal metallic materials exhibiting distinctly different contact responses. Mechanical property extractions are finally demonstrated in each of these materials.
Resumo:
A mathematical model, numerical simulations and stability and flow regime maps corresponding to severe slugging in pipeline riser systems, are presented. In the simulations air and water were used as flowing fluids. The mathematical model considers continuity equations for liquid and gas phases, with a simplified momentum equation for the mixture, neglecting inertia. A drift-flux model, evaluated for the local conditions in the riser, is used as a closure law. The developed model predicts the location of the liquid accumulation front in the pipeline and the liquid level in the riser, so it is possible to determine which type of severe slugging occurs in the system. The numerical procedure is convergent for different nodalizations. A comparison is made with experimental results corresponding to a catenary riser, showing very good results for slugging cycle and stability and flow regime maps. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper a bond graph methodology is used to model incompressible fluid flows with viscous and thermal effects. The distinctive characteristic of these flows is the role of pressure, which does not behave as a state variable but as a function that must act in such a way that the resulting velocity field has divergence zero. Velocity and entropy per unit volume are used as independent variables for a single-phase, single-component flow. Time-dependent nodal values and interpolation functions are introduced to represent the flow field, from which nodal vectors of velocity and entropy are defined as state variables. The system for momentum and continuity equations is coincident with the one obtained by using the Galerkin method for the weak formulation of the problem in finite elements. The integral incompressibility constraint is derived based on the integral conservation of mechanical energy. The weak formulation for thermal energy equation is modeled with true bond graph elements in terms of nodal vectors of temperature and entropy rates, resulting a Petrov-Galerkin method. The resulting bond graph shows the coupling between mechanical and thermal energy domains through the viscous dissipation term. All kind of boundary conditions are handled consistently and can be represented as generalized effort or flow sources. A procedure for causality assignment is derived for the resulting graph, satisfying the Second principle of Thermodynamics. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Every year, the number of discarded electro-electronic products is increasing. For this reason recycling is needed, to avoid wasting non-renewable natural resources. The objective of this work is to study the recycling of materials from parallel wire cable through Unit operations of mineral processing. Parallel wire cables are basically composed of polymer and copper. The following unit operations were tested: grinding, size classification, dense medium separation, electrostatic separation, scrubbing, panning, and elutriation. It was observed that the operations used obtained copper and PVC concentrates with a low degree of cross contamination. It was Concluded that total liberation of the materials was accomplished after grinding to less than 3 mm, using a cage mill. Separation using panning and elutriation presented the best results in terms of recovery and cross contamination. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this article is to study the application of the holographic interferometry techniques in the structural analysis of submarine environment. These techniques are widely used today, with applications in many areas. Nevertheless, its application in submarine environments presents some challenges. The application of two techniques, electronic speckle pattern interferometry (ESPI) and digital holography, comparison of advantages and disadvantages of each of them is presented. A brief study is done on the influence of water properties and the optical effects due to suspended particles as well as possible solutions to minimize these problems. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, processing methods of Fourier optics implemented in a digital holographic microscopy system are presented. The proposed methodology is based on the possibility of the digital holography in carrying out the whole reconstruction of the recorded wave front and consequently, the determination of the phase and intensity distribution in any arbitrary plane located between the object and the recording plane. In this way, in digital holographic microscopy the field produced by the objective lens can be reconstructed along its propagation, allowing the reconstruction of the back focal plane of the lens, so that the complex amplitudes of the Fraunhofer diffraction, or equivalently the Fourier transform, of the light distribution across the object can be known. The manipulation of Fourier transform plane makes possible the design of digital methods of optical processing and image analysis. The proposed method has a great practical utility and represents a powerful tool in image analysis and data processing. The theoretical aspects of the method are presented, and its validity has been demonstrated using computer generated holograms and images simulations of microscopic objects. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
An investigation was conducted on pollutants emitted from steady-state, steady-flow gasification and combustion of polyethylene (PE) in a two-stage furnace. The polymer, in pulverized form, was first pyrolyzed at 1000 degrees C, and subsequently, its gaseous pyrolyzates were burned, upon mixing with air at high temperatures (900-1100 degrees C). The motivation for this indirect type of burning PE was to attain nominally premixed combustion of the pyrolyzate gases with air, thereby achieving lower pollutant emissions than those emanating from the direct burning of the solid PE polymer. This work assessed the effluents of the two-stage furnace and examined the effects of the combustion temperature, as well as the polymer feed rate and the associated fuel/air equivalence ratio (0.3 < phi < 1.4). It was found that, whereas the yield of pyrolysis gas decreased with an increasing polymer feed rate, its composition was nearly independent of the feed rate. CO2 emissions peaked at an equivalence ratio near unity, while the CO emissions increased with an increasing equivalence ratio. The total light volatile hydrocarbon and semivolatile polycyclic aromatic hydrocarbon (PAH) emissions of combustion increased with an increasing equivalence ratio. The generated particulates were mostly submicrometer in size. Overall, PAH and soot emissions from this indirect burning of PE were an order of magnitude lower than corresponding emissions from the direct burning of the solid polymer, obtained previously in this laboratory using identical sampling and analytical techniques. Because pyrolysis of this polymer requires a nominal heat input that amounts to only a diminutive fraction of the heat released during its combustion, implementation of this technique is deemed advantageous.
Resumo:
This study focuses on the technical feasibility of the utilization of waste from the cutting of granite to adjust the chemical composition of slag from steelworks LD, targeting the addition of clinker Portland cement. For this, chemical characterization of the waste, its mixture and fusion was performed, obtaining a CaO/SiO(2) relationship of around 0.9 to 1.2 for the steelworks slag. We selected samples of the waste, mixed, melted and cooled in water and in the oven. Samples cooled in water, after examining with X-ray difractrograms, had been predominantly amorphous. For samples cooled in the furnace, which had vitreous, there was the presence of mineralogical phases Akermanita and Gehlenita, which is considered as the ideal stage for the mineral water activity of the slag. The adjustment of the chemical composition of the slag from steel works by the addition of waste granite was efficient, transforming the waste into a product that is the same as blast furnace slag and can be used in the manufacture of cement.