208 resultados para HLA-G gene polymorphism
Resumo:
Cellular and humoral immune response, as well as cytokine gene expression, was assessed in Nelore cattle with different degrees of resistance to Cooperia punctata natural infection. One hundred cattle (male, weaned, 11-12 months old), kept together on pasture, were evaluated. Faecal and blood samples were collected for parasitological and immunological assays. Based on nematode faecal egg counts (FEC) and worm burden, the seven most resistant and the eight most susceptible animals were selected. Tissue samples of the small intestine were collected for histological quantification of inflammatory cells and analysis of cytokine gene expression (IL-2, IL-4, IL-8, IL-1 2p35, IL-13, TNF-alpha, IFN-gamma, MCP-1, MCP-2, and MUC- 1) using real-time RT-PCR. Mucus samples were also collected for IgA levels determination. Serum IgG1 mean levels against C. punctata antigens were higher in the resistant group, but significant differences between groups were only observed 14 days after the beginning of the experiment against infective larvae (1-3) and 14 and 84 days against adult antigens. The resistant group also presented higher IgA levels against C. punctata (L3 and adult) antigens with significant difference 14 days after the beginning of the trial (P < 0.05). In the small-intestine mucosa, levels of IgA anti-L3 and anti-adult C. punctata were higher in the resistant group, compared with the susceptible group (P < 0.05). Gene expression of both T(H)2 cytokines (IL-4 and IL-13) in the resistant group and T(H)1 cytokines (IL-2, IL-1 2p35, IFN-gamma and MCP-1) in the susceptible group was up-regulated. Such results suggested that immune response to C. punctata was probably mediated by TH2 cytokines in the resistant group and by T(H)1 cytokines in the susceptible group. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
During embryogenesis, one of the two X chromosomes is inactivated in embryos. The production of embryos in vitro may affect epigenetic mechanisms that could alter the expression of genes related to embryo development and X chromosome inactivation (XCI). The aim of this study was to understand XCI during in vitro, pre-implantation bovine embryo development by characterizing the allele-specific expression pattern of the X chromosome-linked gene, monoamine oxidase A (MAOA). Two pools of ten embryos, comprised of the 4-, 8- to 16-cell, morula, blastocyst, and expanded blastocyst stages, were collected. Total RNA from embryos was isolated, and the RT-PCR-RFLP technique was used to observe expression of the MAOA gene. The DNA amplicons were also sequenced using the dideoxy sequencing method. MAOA mRNA was detected, and allele-specific expression was identified in each pool of embryos. We showed the presence of both the maternal and paternal alleles in the 4-, 8-to 16-cell, blastocyst and expanded blastocyst embryos, but only the maternal allele was present in the morula stage. Therefore, we can affirm that the paternal X chromosome is totally inactivated at the morula stage and reactivated at the blastocyst stage. To our knowledge, this is the first report of allele-specific expression of an X-linked gene that is subject to XCI in in vitro bovine embryos from the 4-cell to expanded blastocyst stages. We have established a pattern of XCI in our in vitro embryo production system that can be useful as a marker to assist the development of new protocols for in vitro embryo production. Mol. Reprod. Dev. MoL Reprod. Dev. 77: 615-621, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Background: Most hereditary hemochromatosis (HH) patients are homozygous for the p. C282Y mutation in the HFE gene. Some studies reported that HH phenotypic expression could be modulated by genetic factors such as HJV and HAMP gene mutations. Aims: The aims of this study were to identify HJV and HAMP mutations and to analyze their impact on HH phenotype in non-p. C282Y homozygous individuals. Methods: Twenty-four Brazilian patients with primary iron overload and non-p. C282Y homozygous genotype (transferrin saturation >50% in women and >60% in men and absence of secondary causes) were selected. Subsequent bidirectional sequencing of the HJV and HAMP exons was performed. Results: Sequencing revealed a substitution in heterozygosis, c. 929C>G, which corresponds to p.A310G polymorphism in HJV exon 4 (rs7540883). In the same gene, in another individual, an IVS1-36C>G intronic variant was detected in heterozygosis. In the HAMP gene, an IVS3 + 42G>A intronic variant was identified. There were six (25.0%) patients carrying a heterozygous genotype for the HFE p. C282Y and nine (37.5%) patients carrying a heterozygous genotype for the HFE p. H63D. Conclusion: HJV p.A310G polymorphism and two intronic variants were found, but none of these alterations were associated with digenic inheritance with the HFE gene. Our data indicate that HJV and HAMP functional mutations are not frequent in these patients.
Resumo:
Limited data are available about iron deficiency (ID) in Brazilian blood donors. This study evaluated the frequencies of ID and iron-deficiency anaemia (IDA) separately and according to frequency of blood donations. The protective effect of the heterozygous genotype for HFE C282Y mutation against ID and IDA in female blood donors was also determined. Five hundred and eight blood donors were recruited at the Blood Bank of Santa Casa in Sao Paulo, Brazil. Haemoglobin and serum ferritin concentrations were measured. The genotype for HFE C282Y mutation was determined by polymerase chain reaction followed by restriction fragment length polymorphism analysis. The ID was found in 21 center dot 1% of the women and 2 center dot 6% of the men whereas the IDA was found in 6 center dot 8 and 0 center dot 3%, respectively. The ID was found in 11 center dot 9% of the women in group 1 (first-time blood donors) and the frequency increased to 38 center dot 9% in women of the group 3 (blood donors donating once or more times in the last 12 months). No ID was found in men from group 1; however the ID frequency increased to 0 center dot 9% in group 2 (who had donated blood before but not in the last 12 months) and 5 center dot 0% in group 3. In summary, the heterozygous genotype was not associated with reduction of ID or IDA frequencies in both genders, but in male blood donors it was associated with a trend to elevated ferritin levels (P = 0 center dot 060). ID is most frequent in Brazilian women but was also found in men of group 3.
Resumo:
Background: The methylenetetrahydrofolate reductase (MTHFR), glutamate carboxypeptidase II (GCPII) and reduced folate carrier (RFC1) gene polymorphisms were associated with folate status. We investigated the effects of these polymorphisms on serum folate (SF) and folate-related metabolites in mothers and their neonates. Methods: Cobalamin (Cbl), SF, total homocysteine (tHcy), methylmalonic acid (MMA), S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH) were measured in 275 healthy women and their neonates. MTHFR C677T, GCPII C1561T and RFC1 A80G polymorphisms were determined by PCR-RFLP. Results: Maternal tHcy was affected individually by MTHFR C677T and GCPII C1561T polymorphisms and by combined genotypes MTHFR 677TT/GCPII 1561CC and MTHFR 677TT/RFC1 80AG. The MTHFR and RFC1 polymorphisms were not associated with variations in vitamins or SAM, SAH and MMA in neonates. Neonatal tHcy was predicted directly by maternal tHcy and inversely by maternal SF, neonatal Cbl and neonatal RFC1 80G allele (AG+GG genotypes). Maternal MMA and SAM/SAH were predicted by creatinine and Cbl, respectively. Neonatal MMA was predicted by maternal MMA and GCPII 1561T allele (CT+TT genotypes) and by neonatal Cbl. Conclusions: Maternal tHcy was affected by MTHFR C677T, RFC1 A80G and GCPII C1561T polymorphisms. Maternal GCPII C1561T variant was associated with neonatal MMA. Neonatal RFC1 A80G polymorphism influenced tHcy in neonates. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Objectives: To examine the association between methylenetetrahydrofolate reductase (MTHFR) (C677T and A1298C), methionine synthase (MTR) A2756G and methionine synthase reductase (MTRR) A66G gene polymorphisms and total homocysteine (tHcy), methylmalonic acid (MMA) and S-adenosylmethionine/ S-adenosylhomocysteine (SAM/SAH) levels; and to evaluate the potential interactions with folate or cobalamin (Cbl) status. Subjects/ Methods: Two hundred seventy-five healthy women at labor who delivered full-term normal babies. Cbl, folate, tHcy, MMA, SAM and SAH were measured in serum specimens. The genotypes for polymorphisms were determined by PCR-restriction fragment length polymorphism ( RFLP). Results: Serum folate, MTHFR 677T allele and MTR 2756AA genotypes were the predictors of tHcy levels in pregnant women. Serum Cbl and creatinine were the predictors of SAM/SAH ratio and MMA levels, respectively. The gene polymorphisms were not determinants for MMA levels and SAM/SAH ratios. Low levels of serum folate were associated with elevated tHcy in pregnant women, independently of the gene polymorphisms. In pregnant women carrying MTHFR 677T allele, or MTHFR 1298AA or MTRR 66AA genotypes, lower Cbl levels were associated with higher levels of tHcy. Lower SAM/SAH ratio was found in MTHFR 677CC or MTRR A2756AA genotypes carriers when Cbl levels were lower than 142 pmol/l. Conclusions: Serum folate and MTHFR C677T and MTR A2576G gene polymorphisms were the determinants for tHcy levels. The interaction between low levels of serum Cbl and MTHFR (C677T or A1298C) or MTRR A66G gene polymorphisms was associated with increased tHcy.
Resumo:
Background: The transcription factors SREBP1 and SCAP are involved in intracellular cholesterol homeostasis. Polymorphisms of these genes have been associated with variations on serum lipid levels and response to statins that are potent cholesterol-lowering drugs. We evaluated the effects of atorvastatin on SREBF1a and SCAP mRNA expression in peripheral blood mononuclear cells (PBMC) and a possible association with gene polymorphisms and lowering-cholesterol response. Methods: Fifty-nine hypercholesterolemic patients were treated with atorvastatin (10 mg/day for 4 weeks). Serum lipid profile and mRNA expression in PBMC were assessed before and after the treatment. Gene expression was quantified by real-time PCR using GAPD as endogenous reference and mRNA expression in HepG2 cells as calibrator. SREBF1 -36delG and SCAP A2386G polymorphisms were detected by PCR-RFLP. Results: Our results showed that transcription of SREBF1a and SCAP was coordinately regulated by atorvastatin (r=0.595, p<0.001), and that reduction in SCAP transcription was associated with the 2386AA genotype (p=0.019). Individuals who responded to atorvastatin with a downregulation of SCAP had also a lower triglyceride compared to those who responded to atorvastatin with an upregulation of SCAP. Conclusion: Atorvastatin has differential effects on SREBF1a and SCAP mRNA expression in PBMC that are associated with baseline transcription levels, triglycerides response to atorvastatin and SCAP A2386G polymorphism. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
This study investigated the effects of atorvastatin on ABCB1 and ABCC1 mRNA expression on peripheral blood mononuclear cells (PBMC) and their relationship with gene polymorphisms and lowering-cholesterol response. one hundred and thirty-six individuals with hypercholesterolemia were selected and treated with atorvastatin (10 mg/day/4 weeks). Blood samples were collected for serum lipids and apolipoproteins measurements and DNA and RNA extraction. ABCB1 (C3435T and G2677T/A) and ABCC1 (G2012T) gene polymorphisms were identified by polymerase chain reaction-restriction (PCR)-RFLP and mRNA expression was measured in peripheral blood mononuclear cells by singleplex real-time PCR. ABCB1 polymorphisms were associated with risk for coronary artery disease (CAD) (p < 0.05). After atorvastatin treatment, both ABCB1 and ABCC1 genes showed 50% reduction of the mRNA expression (p < 0.05). Reduction of ABCB1 expression was associated with ABCB1 G2677T/A polymorphism (p = 0.039). Basal ABCB1 mRNA in the lower quartile (<0.024) was associated with lower reduction rate of serum low-density lipoprotein (LDL) cholesterol (33.4 +/- 12.4%) and apolipoprotein B (apoB) (17.0 +/- 31.3%) when compared with the higher quartile (>0.085: LDL-c = 40.3 +/- 14.3%; apoB = 32.5 +/- 10.7%; p < 0.05). ABCB1 substrates or inhibitors did not affect the baseline expression, while ABCB1 inhibitors reversed the effects of atorvastatin on both ABCB1 and ABCC1 transporters. In conclusion, ABCB1 and ABCC1 mRNA levels in PBMC are modulated by atorvastatin and ABCB1 G2677T/A polymorphism. and ABCB1 baseline expression is related to differences in serum LDL cholesterol and apoB in response to atorvastatin. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Deficiencies of complement proteins of the classical pathway are strongly associated with the development of autoimmune diseases. Deficiency of Clr has been observed to occur concomitantly with deficiency in Cls and 9 out of 15 reported cases presented systemic lupus erythernatosus (SLE). Here, we describe a family in which all four children are deficient in Cls but only two of them developed SLE. Hemolytic activity mediated by the alternative and the lectin pathways were normal, but classical pathway activation was absent in all children`s sera. Cls was undetectable, while in the parents` sera it was lower than in the normal controls. The levels of Clr observed in the siblings and parents sera were lower than in the control, while the concentrations of other complement proteins (C3, C4, MBL and MASP-2) were normal in all family members. Impairment of Cls synthesis was observed in the patients` fibroblasts when analyzed by confocal microscopy. We show that all four siblings are homozygous for a mutation at position 938 in exon 6 of the Cls cDNA that creates a premature stop codon. Our investigations led us to reveal the presence of previously uncharacterized splice variants of Cls mRNA transcripts in normal human cells. These variants are derived from the skipping of exon 3 and from the use of an alternative 3` splice site within intron I which increases the size of exon 2 by 87 nucleotides. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Paracoccidioides brasiliensis infectious process relies on the initial expression of virulence faactors that are assumed to be controlled by molecular mechanisms through which the conidia and/or mycelial fragments convert to yeast cells. In order to analyze the profile of the thermally-induced dimorphic gene expression, 48 h C-L transition cultures which had been incubated at 36 degrees C were studied. By this time approximately 50% of the conidial population had already reverted to yeast form cells. At this transition time, an EST-Orestes library was constructed and characterized. As a result, 79 sequences were obtained, of which 39 (49.4%) had not been described previously in other libraries of this fungus and which could represent novel exclusive C-Y transition genes. Two of these sequences are, among others, cholestanol delta-isomerase, and electron transfer flavoprotein-ubiquinoneoxidoreductase (ETF-QO). The other 40 (50.6%) sequences were shared with Mycelia (M), Yeast (Y) or Mycelia to yest transition (M-Y) libraries. An important component of this group of sequences is a putative response regulator receiver SKN7, a protein of high importance in stress adaptation and a regulator of virulence in some bacteria and fungi. This is the first report identifying genes expressed during the C-Y transition process, the initial step required to understand the natural history of P brasiliensis conidia induced infection.
Resumo:
Mercury (Hg) exposure is associated with disease conditions, including cardiovascular problems. Although the mechanisms implicated in these complications have not been precisely defined yet, matrix metalloproteinases (MMPs) may be involved. The gene encoding MMP-2 presents genetic polymorphisms which affect the expression and activity level of this enzyme. A common polymorphism of MMP-2 gene is the C(-1306)T (rs 243865), which is known to disrupt a Sp1-type promoter site (CCACC box), thus leading to lower promoter activity associated with the T allele. This study aimed at examining how this polymorphism affects the circulating MMP-2 levels and its endogenous inhibitor, the tissue inhibitor of metalloproteinase-2 (TIMP-2) in 210 subjects environmentally exposed to Hg. Total blood and plasma Hg concentrations were determined by inductively coupled plasma-mass spectrometry (ICP-MS). MMP-2 and TIMP-2 concentrations were measured in plasma samples by gelatin zymography and ELISA, respectively. Genotypes for the C(-1306)T polymorphism were determined by Taqman (R) Allele Discrimination assay. We found a positive association (p = 0.0057) between plasma Hg concentrations and MMP-2/TIMP-2 (an index of net MMP-2 activity). The C(-1306)T polymorphism modified MMP-2 concentrations (p = 0.0465) and MMP-2/TIMP-2 ratio (p = 0.0060) in subjects exposed to Hg, with higher MMP-2 levels been found in subjects carrying the C allele. These findings suggest a significant interaction between the C(-1306)T polymorphism and Hg exposure, possibly increasing the risk of developing diseases in subjects with the C allele. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Mercury (Hg) exposure causes health problems including cardiovascular diseases. Although precise mechanisms have not been precisely defined yet, matrix metalloproteinases (MMPs) may be involved. The gene encoding MMP-9 presents genetic polymorphisms which affect the expression and activity level of this enzyme. Two polymorphisms in the promoter region [C(-1562)T and (CA)(n)] are functionally relevant, and are implicated in several diseases. This study aimed at examining how these polymorphisms affect the circulating MMP-9 levels and its endogenous inhibitor, the tissue inhibitor of metalloproteinase-1 (TIMP-1) in 266 subjects environmentally exposed to Hg. Blood and plasma Hg concentrations were determined by inductively coupled plasma-mass spectrometry (ICP-MS). MMP-9 and TIMP-1 concentrations were measured in plasma samples by gelatin zymography and ELISA, respectively. Genotypes for the C(-1562)T and the microsatellite (CA)(n) polymorphisms were determined. We found a positive association (P<0.05) between plasma Hg concentrations and MMP-9/TIMP-1 ratio (an index of net MMP-9 activity). When the subjects were divided into tertiles with basis on their plasma Hg concentrations, we found that the (CA)(n) polymorphism modified MMP-9 concentrations and MMP-9/TIMP-1 ratio in subjects with the lowest Hg concentrations (first tertile), with the highest MMP-9 levels being found in subjects with genotypes including alleles with 21 or more CA repeats (H alleles) (P<0.05). Conversely, this polymorphism had no effects on subjects with intermediate or high plasma Hg levels (second and third tertiles, respectively). The C(-1562)T polymorphism had no effects on MMP-9 levels. These findings suggest a significant interaction between the (CA)(n) polymorphism and low levels of Hg exposure, possibly increasing the risk of developing diseases in subjects with H alleles. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
In insects, exoskeleton (cuticle) formation at each molt cycle includes complex biochemical pathways wherein the laccase enzymes (EC 1.10.3.2) may have a key role. We identified an Amlac2 gene that encodes a laccase2 in the honey bee, Apis mellifera, and investigated its function in exoskeleton differentiation. The Amlac2 gene consists of nine exons resulting in an ORE of 2193 nucleotides. The deduced translation product is a 731 amino acid protein of 81.5 kDa and a pl of 6.05. Amlac2 is highly expressed in the integument of pharate adults, and the expression precedes the onset of cuticle pigmentation and the intensification of sclerotization. In accordance with the temporal sequence of exoskeleton differentiation from anterior to posterior direction, the levels of Amlac2 transcript increase earlier in the thoracic than in the abdominal integument. The gene expression lasts even after the bees emerge from brood cells and begin activities in the nest, but declines after the transition to foraging stage, suggesting that maturation of the exoskeleton is completed at this stage. Post-transcriptional knockdown of Amlac2 gene expression resulted in structural abnormalities in the exoskeleton and drastically affected adult eclosion. By setting a ligature between the thorax and abdomen of early pupae we could delay the increase in hemolymph ecdysteroid levels in the abdomen. This severely impaired the increase in Amlac2 transcript levels and also the differentiation of the abdominal exoskeleton. Taken together, these results indicate that Amlac2 expression is controlled by ecdysteroids and has a critical role in the differentiation of the adult exoskeleton of honey bees. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
in the Apis mellifera post-genomic era, RNAi protocols have been used in functional approaches. However, sample manipulation and invasive methods such as injection of double-stranded RNA (dsRNA) can compromise physiology and survival. To circumvent these problems, we developed a non-invasive method for honeybee gene knockdown, using a well-established vitellogenin RNAi system as a model. Second instar larvae received dsRNA for vitellogenin (dsVg-RNA) in their natural diet. For exogenous control, larvae received dsRNA for GFP (dsGFP-RNA). Untreated larvae formed another control group. Around 60% of the treated larvae naturally developed until adult emergence when 0.5 mu g of dsVg-RNA or dsGFP-RNA was offered while no larvae that received 3.0 mu g of dsRNA reached pupal stages. Diet dilution did not affect the removal rates. Viability depends not only on the delivered doses but also on the internal conditions of colonies. The weight of treated and untreated groups showed no statistical differences. This showed that RNAi ingestion did not elicit drastic collateral effects. Approximately 90% of vitellogenin transcripts from 7-day-old workers were silenced compared to controls. A large number of samples are handled in a relatively short time and smaller quantities of RNAi molecules are used compared to invasive methods. These advantages culminate in a versatile and a cost-effective approach. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Background: Interleukin 8 (IL-8) is a chemokine related to the initiation and amplification of acute and chronic inflammatory processes. Polymorphisms in the IL8 gene have been associated with inflammatory diseases. We investigated whether the - 845(T/C) and - 738(T/A) single nucleotide polymorphisms (SNPs) in the IL8 gene, as well as the haplotypes they form together with the previously investigated -353(A/T), are associated with susceptibility to chronic periodontitis. Methods: DNA was extracted from buccal epithelial cells of 400 Brazilian individuals (control n =182, periodontitis n=218). SNPs were genotyped by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Disease associations were analyzed by the chi(2) test, Exact Fisher test and Clump program. Haplotypes were reconstructed using the expectation-maximization algorithm and differences in haplotype distribution between the groups were analyzed to estimate genetic susceptibility for chronic periodontitis development. Results: When analyzed individually, no SNPs showed different distributions between the control and chronic periodontitis groups. Although, nonsmokers carrying the TTA/CAT (OR = 2.35, 95% CI = 1.03-5.36) and TAT/CTA (OR= 6.05, 95% CI = 1.32-27.7) haplotypes were genetically susceptible to chronic periodontitis. The ITT/TAA haplotype was associated with protection against the development of periodontitis (for nonsmokers OR= 0.22, 95% CI = 0.10-0.46). Conclusion: Although none of the investigated SNPs in the IL8 gene was individually associated with periodontitis, some haplotypes showed significant association with susceptibility to, or protection against, chronic periodontitis in a Brazilian population. (C) 2010 Elsevier B.V. All rights reserved.