140 resultados para Bivalent transition metal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transition from marine/brackish waters to freshwater habitats constitutes a severe osmotic and ionic challenge, and successful invasion has demanded the selection of morphological, physiological, biochemical and behavioral adaptations. We evaluated short-term (1 to 12 h exposure) and long-term (5 d acclimation), anisosmotic extracellular (osmolality, [Na(+), Cl(-)]) and long-term isosmotic intracellular osmoregulatory capability in Palaemon northropi, a neotropical intertidal shrimp. F northropi survives well and osmo- and ionoregulates strongly during short- and long-term exposure to 5-45 parts per thousand salinity, consistent with its rocky tide pool habitat subject to cyclic salinity fluctuations, Muscle total free amino acid (FAA) concentrations decreased by 63% in shrimp acclimated to 5%. salinity, revealing a role in hypoosmotic cell volume regulation; this decrease is mainly a consequence of diminished glycine, arginine and proline. Total FAA contributed 31% to muscle intracellular osmolality at 20 parts per thousand, an isosmotic salinity, and decreased to 13% after acclimation to 5 parts per thousand. Gill and nerve tissue FAA concentrations remained unaltered. These tissue-specific responses reflect efficient anisosmotic and anisoionic extracellular regulatory mechanisms, and reveal the dependence of muscle tissue on intracellular osmotic effectors. FAA concentration is higher in P. northropi than in diadromous and hololimnetic palaemonids, confirming muscle FAA concentration as a good parameter to evaluate the degree of adaptation to dilute media. The osmoregulatory capability of P. northropi may reflect the potential physiological capacity of ancestral marine palaemonids to penetrate into dilute media, and reveals the importance of evaluating osmoregulatory processes in endeavors to comprehend the invasion of dilute media by ancestral marine crustaceans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statement of problem. There are no established clinical procedures for bonding zirconia to tooth structure using resin cements. Purpose. The purpose of this study was to evaluate the influence of metal primers, resin cements, and aging on bonding to zirconia. Material and methods. Zirconia was treated with commercial primers developed for bonding to metal alloys (Metaltite, Metal Primer II, Alloy Primer or Totalbond). Non-primed specimens were considered as controls. One-hundred disk-shaped specimens (19 x 4 mm) were cemented to composite resin substrates using Panavia or RelyX Unicem (n=5). Microtensile bond strength specimens were tested after 48 hours and 5 months (150 days), and failure modes were classified as type 1 (between ceramic/cement), 2 (between composite resin/cement) or 3 (mixed). Data were analyzed by 3-way ANOVA and Multiple Comparison Tukey test (alpha=.05). Results. The interactions primer/luting system (P=.016) and luting system/storage time (P=.004) were statistically significant. The use of Alloy Primer significantly improved the bond strength of RelyX Unicem (P<.001), while for Panavia, none of the primers increased the bond strength compared to the control group. At 48 hours, Panavia had statistically higher bond strength (P=.004) than Unicem (13.9 +/- 4.4MPa and 10.2 +/- 6.6MPa, respectively). However, both luting systems presented decreasing, statistically similar; values after aging (Panavia: 3.6 +/- 2.2MPa; Unicem: 6.1 +/- 5.3MPa). At 48 hours, Alloy Primer/Unicem had the lowest incidence of type 1 failure (8%). After aging, all the groups showed a predominance of type 1 failures. Conclusions. The use of Alloy Primer improved bond strength between RelyX Unicem and zirconia. Though the initial values obtained with Panavia were significantly higher than RelyX Unicem, after aging, both luting agents presented statistically similar performances. (J Prosthet Dent 2011;105:296-303)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the effect of framework design on the fracture resistance of metal-ceramic implant-supported crowns. Screw-retained molar crowns with a screw access hole composed of metal or porcelain were compared to a cement-retained crown (control). For each group (n = 10), five crowns were subjected to dynamic loading (1,200,000 x 100 N x 2 Hz at 37 degrees C). Afterward, all specimens were loaded to failure using a universal testing machine. Significant differences could be established between the cement-and screw-retained groups (P <= .05), but no difference was found between the screw-retained groups and the specimens subjected to dynamic loading. Occlusal discontinuity of screw-retained crowns affects their resistance, and the metallic support on the screw access hole did not reinforce the crowns. Int J Prosthodont 2010;23:350-352.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives. The purpose of this study was to investigate the effect of light-curing protocol on degree of conversion (DC), volume contraction (C), elastic modulus (E), and glass transition temperature (T(g)) as measured on a model polymer. It was a further aim to correlate the measured values with each other. Methods. Different light-curing protocols were used in order to investigate the influence of energy density (ED), power density (PD), and mode of cure on the properties. The modes of cure were continuous, pulse-delay, and stepped irradiation. DC was measured by Raman micro-spectroscopy. C was determined by pycnometry and a density column. E was measured by a dynamic mechanical analyzer (DMA), and T(g) was measured by differential scanning calorimetry (DSC). Data were submitted to two-and three-way ANOVA, and linear regression analyses. Results. ED, PD, and mode of cure influenced DC, C, E, and T(g) of the polymer. A significant positive correlation was found between ED and DC (r = 0.58), ED and E (r = 0.51), and ED and T(g) (r = 0.44). Taken together, ED and PD were significantly related to DC and E. The regression coefficient was positive for ED and negative for PD. Significant positive correlations were detected between DC and C (r = 0.54), DC and E (r = 0.61), and DC and T(g) (r = 0.53). Comparisons between continuous and pulse-delay modes of cure showed significant influence of mode of cure: pulse-delay curing resulted in decreased DC, decreased C, and decreased T(g). Influence of mode of cure, when comparing continuous and step modes of cure, was more ambiguous. A complex relationship exists between curing protocol, microstructure of the resin and the investigated properties. The overall performance of a composite is thus indirectly affected by the curing protocol adopted, and the desired reduction of C may be in fact a consequence of the decrease in DC. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statement of problem. Dental fractures can occur in endodontically treated teeth restored with posts. Purpose. The purpose of this study was to evaluate the in vitro fracture resistance of roots with glass-fiber and metal posts of different lengths. Material and methods. Sixty endodontically treated maxillary canines were embedded in acrylic resin, except for 4 mm of the cervical area, after removing the clinical crowns. The post spaces were opened with a cylindrical bur at low speed attached to a surveyor, resulting in preparations with lengths of 6 mm (group 6 mm), 8 mm (group 8 mm), or 10 mm (group 10 mm). Each group was divided into 2 subgroups according to the post material: cast post and core or glass-fiber post (n=30). The posts were luted with dual-polymerizing resin cement (Panavia F). Cast posts and cores of Co-Cr (Resilient Plus) crowns were made and cemented with zinc phosphate. Specimens were subjected to increasing compressive load (N) until fracture. Data were analyzed with 2-way ANOVA and the Tukey-Kramer test (alpha=.05). Results. The ANOVA analysis indicated significant differences (P<.05) among the groups, and the Tukey test revealed no significant difference among the metal posts of 6-mm length (26.5 N +/- 13.4), 8-mm length (25.2 N +/- 13.9), and 10-mm length (17.1 N +/- 5.2). Also, in the glass-fiber post group, there was no significant difference when posts of 8-mm length (13.4 N +/- 11.0) were compared with the 6-mm (6.9 N +/- 4.6) and 10-mm (31.7 N +/- 13.1) groups. The 10-mm-long post displayed superior fracture resistance, and the 6-mm-long post showed significantly lower mean values (P<.001). Conclusions. Within the limitations of this study, it was concluded that the glass-fiber post represents a viable alternative to the cast metal post, increasing the resistance to fracture of endodontically treated canines. (J Prosthet Dent 2009;101:183-188)