205 resultados para Apical disruption
Resumo:
We used an exome-sequencing strategy and identified an allelic series of NOTCH2 mutations in Hajdu-Cheney syndrome, an autosomal dominant multisystem disorder characterized by severe and progressive bone loss. The Hajdu-Cheney syndrome mutations are predicted to lead to the premature truncation of NOTCH2 with either disruption or loss of the C-terminal proline-glutamate-serine-threonine-rich proteolytic recognition sequence, the absence of which has previously been shown to increase Notch signaling.
Increased platelet GSK3B activity in patients with mild cognitive impairment and Alzheimer`s disease
Resumo:
The disruption of glycogen synthase kinase 3-beta (GSK3B) homeostasis has implications in the pathophysiology of neuropsychiatric disorders, namely Alzheimer`s disease (AD). GSK3B activity is increased within the AD brain, favoring the hyperphosphorylation of microtubule-associated protein Tau and the formation of neurofibrillary tangles. Such abnormality has also been detected in leukocytes of patients with cognitive disorders. The aim of the present study was to determine the expression of total and phosphorylated GSK3B at protein level in platelets of older adults with varying degrees of cognitive impairment, and to compare GSK3B activity in patients with AD, mild cognitive impairment (MCI) and healthy controls. Sixty-nine older adults were included (24 patients with mild to moderate AD, 22 patients with amnestic MCI and 23 elderly controls). The expression of platelet GSK3B (total- and Ser-9 phosphorylated GSK3B) was determined by Western blot. GSK3B activity was indirectly assessed by means of the proportion between phospho-GSK3B to total GSK3B (GSK3B ratio), the former representing the inactive form of the enzyme. Ser-9 phosphorylated GSK3B was significantly reduced in patients with MCI and AD as compared to controls (p = 0.04). Platelet GSK3B ratio was significantly decreased in patients with MCI and AD (p = 0.04), and positively correlated with scores on memory tests (r = 0.298, p = 0.01). In conclusion, we corroborate previous evidence of increased GSK activity in peripheral tissues of patients with MCI and AD, and further propose that platelet GSK may be an alternative peripheral biomarker of this abnormality, provided samples are adequately handled in order to preclude platelet activation. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory immune response directed against myelin antigens of the central nervous system. In its murine model, EAE, Th17 cells play an important role in disease pathogenesis. These cells can induce blood-brain barrier disruption and CNS immune cells activation, due to the capacity to secrete high levels of IL-17 and IL-22 in an IL-6 + TGF-beta dependent manner. Thus, using the oral tolerance model, by which 200 mu g of MOG 35-55 is given orally to C57BL/6 mice prior to immunization, we showed that the percentage of Th17 cells as well as IL-17 secretion is reduced both in the periphery and also in the CNS of orally tolerated animals. Altogether, our data corroborates with the pathogenic role of IL-17 and IFN-gamma in EAE, as its reduction after oral tolerance, leads to an overall reduction of pro-inflammatory cytokines, such as IL-1 alpha, IL-6, IL-9, IL-12p70 and the chemokines MIP-1 beta, RANTES, Eotaxin and KC in the CNS. It is noteworthy that this was associated to an increase in IL-10 levels. Thus, our data clearly show that disease suppression after oral tolerance induction, correlates with reduction in target organ inflammation, that may be caused by a reduced Th1/Th17 response. Crown Copyright (c) 2010 Published by Elsevier B.V. All rights reserved.
Resumo:
Crajoinas RO, Lessa LMA, Carraro-Lacroix LR, Davel APC, Pacheco BPM, Rossoni LV, Malnic G, Girardi ACC. Posttranslational mechanisms associated with reduced NHE3 activity in adult vs. young prehypertensive SHR. Am J Physiol Renal Physiol 299:F872-F881, 2010. First published July 14, 2010; doi:10.1152/ajprenal.00654.2009.-Abnormalities in renal proximal tubular (PT) sodium transport play an important role in the pathophysiology of essential hypertension. The Na(+)/H(+) exchanger isoform 3 (NHE3) represents the major route for sodium entry across the apical membrane of renal PT cells. We therefore aimed to assess in vivo NHE3 transport activity and to define the molecular mechanisms underlying NHE3 regulation before and after development of hypertension in the spontaneously hypertensive rat (SHR). NHE3 function was measured as the rate of bicarbonate reabsorption by means of in vivo stationary microperfusion in PT from young prehypertensive SHR (Y-SHR; 5-wk-old), adult SHR (A-SHR; 14-wk-old), and age-matched Wistar Kyoto (WKY) rats. We found that NHE3-mediated PT bicarbonate reabsorption was reduced with age in the SHR (1.08 +/- 0.10 vs. 0.41 +/- 0.04 nmol/cm(2)xs), while it was increased in the transition from youth to adulthood in the WKY rat (0.59 +/- 0.05 vs. 1.26 +/- 0.11 nmol/cm(2)xs). Higher NHE3 activity in the Y-SHR compared with A-SHR was associated with a predominant microvilli confinement and a lower ratio of phosphorylated NHE3 at serine-552 to total NHE3 (P-NHE3/total). After development of hypertension, P-NHE3/total increased and NHE3 was retracted out of the microvillar microdomain along with the regulator dipeptidyl peptidase IV (DPPIV). Collectively, our data suggest that the PT is playing a role in adapting to the hypertension in the SHR. The molecular mechanisms of this adaptation possibly include an increase of P-NHE3/total and a redistribution of the NHE3-DPPIV complex from the body to the base of the PT microvilli, both predicted to decrease sodium reabsorption.
Resumo:
Background: Positive surgical margin (PSM) after radical prostatectomy (RP) has been shown to be an independent predictive factor for cancer recurrence. Several investigations have correlated clinical and histopathologic findings with surgical margin status after open RP. However, few studies have addressed the predictive factors for PSM after robot-assisted laparoscopic RP (RARP). Objective: We sought to identify predictive factors for PSMs and their locations after RARP. Design, setting, and participants: We prospectively analyzed 876 consecutive patients who underwent RARP from January 2008 to May 2009. Intervention: All patients underwent RARP performed by a single surgeon with previous experience of > 1500 cases. Measurements: Stepwise logistic regression was used to identify potential predictive factors for PSM. Three logistic regression models were built: (1) one using preoperative variables only, (2) another using all variables (preoperative, intraoperative, and postoperative) combined, and (3) one created to identify potential predictive factors for PSM location. Preoperative variables entered into the models included age, body mass index (BMI), prostate-specific antigen, clinical stage, number of positive cores, percentage of positive cores, and American Urological Association symptom score. Intra-and postoperative variables analyzed were type of nerve sparing, presence of median lobe, percentage of tumor in the surgical specimen, gland size, histopathologic findings, pathologic stage, and pathologic Gleason grade. Results and limitations: In the multivariable analysis including preoperative variables, clinical stage was the only independent predictive factor for PSM, with a higher PSM rate for T3 versus T1c (odds ratio [OR]: 10.7; 95% confidence interval [CI], 2.6-43.8) and for T2 versus T1c (OR: 2.9; 95% CI, 1.9-4.6). Considering pre-, intra-, and postoperative variables combined, percentage of tumor, pathologic stage, and pathologic Gleason score were associated with increased risk of PSM in the univariable analysis (p < 0.001 for all variables). However, in the multivariable analysis, pathologic stage (pT2 vs pT1; OR: 2.9; 95% CI, 1.9-4.6) and percentage of tumor in the surgical specimen (OR: 8.7; 95% CI, 2.2-34.5; p = 0.0022) were the only independent predictive factors for PSM. Finally, BMI was shown to be an independent predictive factor(OR: 1.1; 95% CI, 1.0-1.3; p = 0.0119) for apical PSMs, with increasing BMI predicting higher incidence of apex location. Because most of our patients were referred from other centers, the biopsy technique and the number of cores were not standardized in our series. Conclusions: Clinical stage was the only preoperative variable independently associated with PSM after RARP. Pathologic stage and percentage of tumor in the surgical specimen were identified as independent predictive factors for PSMs when analyzing pre-, intra-, and postoperative variables combined. BMI was shown to be an independent predictive factor for apical PSMs. (C) 2010 European Association of Urology. Published by Elsevier B. V. All rights reserved.
Resumo:
Purpose: The differential diagnosis in children who walk on their toes includes mild spastic diplegia and idiopathic toe walking (ITW). A diagnosis of ITW is often one of exclusion. To better characterize the diagnosis of ITW, quantitative gait analysis was utilized in a series of patients with an established diagnosis of ITW. Study Design: Patients with an established diagnosis of ITW were analyzed by quantitative gait analysis. Data were recorded as each subject walked in a self-selected toe-walking pattern. The subject was then asked to ambulate making every effort to walk in a normal heel-toe reciprocating fashion. Data were collected to determine if this group of idiopathic toe walkers was able to normalize their gait. Data sets were compared with each other and with historical normal controls. Results: Fifty-one neurologically normal children ( 102 extremities) with ITW were studied in the Motion Analysis Laboratory at a mean age of 9.3 years. In the self-selected trials, significant deviations in both kinematics and kinetics at the level of the ankle were identified. Disruption of all 3 ankle rockers and a plantar flexion bias of the ankle throughout the gait cycle were most commonly seen. When asked to attempt a normal heel-toe gait, 17% of the children were able to normalize both stance and swing variables. In addition, 70% were able to normalize some but not all of the stance and swing variables. Conclusion: Quantitative gait analysis is an effective tool for differentiating mild cerebral palsy from ITW. Kinematic and kinetic distinctions between the diagnoses are evident at the knee and ankle. The ability to normalize on demand at least some of the kinematic and kinetic variables associated with toe walking is seen in most children with ITW.
Resumo:
Traditional Periodic Acid Schiff has been extensively used, coupled with immunohistochemistry for epithelia or mesenchymal cells, to highlight renal tubular basement membrane (TBM). We recently tried to perform such technique in a 5/6 nephrectomy model of progressive renal fibrosis to demonstrate TBM disruption as an evidence for epithelial-mesenchymal transdifferentiation. Despite excellent basement membrane staining with traditional fuchsin-Periodic Acid Schiff, the interface between epithelial and mesenchymal cells was frequently blurred when revealed with 3`3 diaminobenzidine tetrachloride-peroxidase. Also, it was inadequate when revealed with alkaline phosphatase-fast red. We devised a triple staining method with Periodic Acid-Thionin Schiff to highlight basement membrane in blue, after double immunostaining for epithelium and mesenchymal cells. Blue basement membrane rendered a brisk contrast and highlighted boundaries between epithelial-mesenchymal interfaces. This method was easy to perform and useful to demonstrate the TBM, yield a clear demonstration of the very focal TBM disruption found in this model of progressive renal fibrosis.
Resumo:
Crotamine, one of the main toxic components of Crotalus durissus terrificus venom, is a small non-enzymatic basic polypeptide, which causes hind limb paralysis and necrosis of muscle cells. it is well-known that several toxins penetrate into the cytosol through endocytosis, although in many cases the mechanism by which this occurs has not been fully investigated. Recently, using low concentrations of crotamine, we demonstrated the uptake of this toxin into actively proliferative cells via endocytosis, an event that ensues crotamine binding to cell membrane heparan sulfate proteoglycans. Thus, crotamine can be regarded as a cell-penetrating peptide that, additionally, has been shown to be able of delivering some biologically active molecules into various cells. Herein, we investigate one of the mechanisms by which crotamine exerts its cytotoxic effects by following its uptake into highly proliferative cells, as CHO-K1 cells. Crotamine accumulation in the acidic endosomal/lysosomal vesicles was observed within 5 min after treatment of these cells with a cytotoxic concentration of this toxin, a value determined here by classical MTT assay. This accumulation caused disruption of lysosomal vesicles accompanied by the leakage of these vesicles contents into the cytosol. This lysosomal lysis also promoted the release of cysteine cathepsin and an increase of caspase activity in the cytoplasm. This chain of events seems to trigger a cell death process. Overall, our data suggest that lysosomes are the primary targets for crotamine cytotoxicity, a proposal corroborated by the correlation between both the kinetics and concentration-dependence of crotamine accumulation in lysosome compartments and the cytotoxic effects of this protein in CHO-K1 cells. Although crotamine is usually regarded as a myotoxin, we observed that intraperitoneal injection of fluorescently labeled crotamine in living mice led to significant and rapid accumulation of this toxin in the cell cytoplasm of several tissues, suggesting that crotamine cytotoxicity might not be restricted to muscle cells. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The protozoan parasite Leishmania presents a dynamic and plastic genome in which gene amplification and chromosome translocations are common phenomena. Such plasticity hints at the necessity of dependable genome maintenance pathways. Eukaryotic cells have evolved checkpoint control systems that recognize altered DNA structures and halt cell cycle progression allowing DNA repair to take place. In these cells, the PCNA-related heterotrimeric complex formed by the proteins Hus1, Rad9, and Rad1 is known to participate in the early steps of replicative stress sensing and signaling. Here we show that the Hus1 homolog of Leishmania major is a nuclear protein that improves the cell capability to cope with replicative stress. Overexpression of LmHus1 confers resistance to the genotoxic drugs hydroxyurea (HU) and methyl methanesulfonate (MMS) and resistance to HU correlates to reduced net DNA damage upon LmHus1 expression. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVE: Investigate the effects of antenatal steroids and tracheal occlusion on pulmonary expression of vascular endothelial growth factor receptors in rats with nitrofen-induced congenital diaphragmatic hernia. STUDY DESIGN: Fetuses were exposed to nitrofen at embryonic day 9.5. Subgroups received dexamethasone or were operated on for tracheal occlusion, or received combined treatment. Morphologic variables were recorded. To analyze vascular endothelial growth factor receptor 1 and vascular endothelial growth factor receptor 2 expression, we performed Western blotting and immunohistochemistry. Morphologic variables were analyzed by analysis of variance and immunohistochemistry by Kruskal-Wallis test. RESULTS: Congenital diaphragmatic hernia decreased body weight, total lung weight, and lung-to-body weight ratio. Tracheal occlusion increased total lung weight and lung-to-body weight ratio (P < .05). Fetuses with congenital diaphragmatic hernia had reduced vascular endothelial growth factor receptor 1 and vascular endothelial growth factor receptor 2 expression, whereas steroids and tracheal occlusion increased their expression. Combined treatment increased expression of receptors, but had no additive effect. CONCLUSION: Vascular endothelial growth factor signaling disruption may be associated with pulmonary hypertension in congenital diaphragmatic hernia. Tracheal occlusion and steroids provide a pathway for restoring expression of vascular endothelial growth factor receptors.
Resumo:
Objective. To investigate the mechanism underlying neutrophil migration into the articular cavity in experimental arthritis and, by extension, human-inflammatory synovitis. Methods. Antigen-induced arthritis (AIA) was generated in mice with methylated bovine serum albumin (mBSA). Migration assays and histologic analysis were used to evaluate neutrophil recruitment to knee joints. Levels of inflammatory mediators were measured by enzyme-linked immunosorbent assay. Antibodies and pharmacologic inhibitors were used in vivo to determine the role of specific disease mediators. Samples of synovial tissue and synovial fluid from rheumatoid arthritis (RA) or osteoarthritis patients were evaluated for CXCL1 and CXCL5 expression. Results. High levels of CXCL1, CXCL5, and leukotriene B-4 (LTB4) were expressed in the joints of arthritic mice. Confirming their respective functional roles, repertaxin (a CXCR1/CXCR2 receptor antagonist), anti-CXCL1 antibody, anti-CXCL5 antibody, and MK886 (a leukotriene synthesis inhibitor) reduced mBSA-induced neutrophil migration to knee joints. Repertaxin reduced LTB4 production in joint tissue, and neutrophil recruitment induced by CXCL1 or CXCL5 was inhibited by MK886, suggesting a sequential mechanism. Levels of both CXCL1 and CXCL5 were elevated in synovial fluid and were released in vitro by RA synovial tissues. Moreover, RA synovial fluid neutrophils stimulated with CXCL1 or CXCL5 released significant amounts of LTB4. Conclusion. Our data implicate CXCL1, CXCL5, and LTB4, acting sequentially, in neutrophil migration in AIA. Elevated levels of CXCL1 and CXCL5 in the synovial compartment of RA patients provide robust comparative data indicating that this mechanism plays a role in inflammatory joint disease. Together, these results suggest that inhibition of. CXCL1, CXCL5, or LTB4 may represent a potential therapeutic strategy in RA.
Resumo:
Leukotriene B-4 (LTB4) mediates different inflammatory events such as neutrophil migration and pain. The present study addressed the mechanisms of LTB4-mediated joint inflammation-induced hypernociception. It was observed that zymosan-induced articular hypernociception and neutrophil migration were reduced dose-dependently by the pretreatment with MK886 (1-9 mg/kg; LT synthesis inhibitor) as well as in 5-lypoxygenase-deficient mice (5LO(-/-)) or by the selective antagonist of the LTB4 receptor (CP105696; 3 mg/kg). Histological analysis showed reduced zymosan-induced articular inflammatory damage in 5LO(-/-) mice. The hypernociceptive role of LTB4 was confirmed further by the demonstration that joint injection of LTB4 induces a dose (8.3, 25, and 75 ng)-dependent articular hypernociception. Furthermore, zymosan induced an increase in joint LTB4 production. Investigating the mechanism underlying LTB4 mediation of zymosan-induced hypernociception, LTB4-induced hypernociception was reduced by indomethacin (5 mg/kg), MK886 (3 mg/kg), celecoxib (10 mg/kg), antineutrophil antibody (100 mu g, two doses), and fucoidan (20 mg/kg) treatments as well as in 5LO(-/-) mice. The production of LTB4 induced by zymosan in the joint was reduced by the pretreatment with fucoidan or antineutrophil antibody as well as the production of PGE(2) induced by LTB4. Therefore, besides reinforcing the role of endogenous LTB4 as an important mediator of inflamed joint hypernociception, these results also suggested that the mechanism of LTB4-induced articular hypernociception depends on prostanoid and neutrophil recruitment. Furthermore, the results also demonstrated clearly that LTB4-induced hypernociception depends on the additional release of endogenous LTs. Concluding, targeting LTB4 synthesis/action might constitute useful therapeutic approaches to inhibit articular inflammatory hypernociception.
Resumo:
IL-13 and eotaxin play important, inter-related roles in asthma models. In the lungs, CysLT, produced by the 5-LO-LTC4S pathway, mediate some local responses to IL-13 and eotaxin; in bone marrow, CysLT enhance IL-5-dependent eosinophil differentiation. We examined the effects of IL-13 and eotaxin on eosinophil differentiation. Semi-solid or liquid cultures were established from murine bone marrow with GM-CSF or IL-5, respectively, and the effects of IL-13, eotaxin, or CysLT on eosinophil colony formation and on eosinophil differentiation in liquid culture were evaluated, in the absence or presence of: a) the 5-LO inhibitor zileuton, the FLAP inhibitor MK886, or the CysLT1R antagonists, montelukast and MK571; b) mutations that inactivate 5-LO, LTC4S, or CysLT1R; and c) neutralizing mAb against eotaxin and its CCR3 receptor. Both cytokines enhanced GM-CSF-dependent eosinophil colony formation and IL-5-stimulated eosinophil differentiation. Although IL-13 did not induce eotaxin production, its effects were abolished by anti-eotaxin and anti-CCR3 antibodies, suggesting up-regulation by IL-13 of responses to endogenous eotaxin. Anti-CCR3 blocked eotaxin completely. The effects of both cytokines were prevented by zileuton, MK886, montelukast, and MK571, as well as by inactivation of the genes coding for 5-LO, LTC4S, and CysLT1R. In the absence of either cytokine, these treatments or mutations had no effect. These findings provide evidence for: a) a novel role of eotaxin and IL-13 in regulating eosinophilopoiesis; and b) a role for CysLTRs in bone marrow cells in transducing cytokine regulatory signals. J. Leukoc. Biol. 87: 885-893; 2010.
Resumo:
Cannabis sativa, the most widely used illicit drug, has profound effects on levels of anxiety in animals and humans. Although recent studies have helped provide a better understanding of the neurofunctional correlates of these effects, indicating the involvement of the amygdala and cingulate cortex, their reciprocal influence is still mostly unknown. In this study dynamic causal modelling (DCM) and Bayesian model selection (BMS) were used to explore the effects of pure compounds of C. sativa [600 mg of cannabidiol (CBD) and 10 mg Delta(9)-tetrahydrocannabinol (Delta(9)-THC)] on prefrontal-subcortical effective connectivity in 15 healthy subjects who underwent a double-blind randomized, placebo-controlled fMRI paradigm while viewing faces which elicited different levels of anxiety. In the placebo condition, BMS identified a model with driving inputs entering via the anterior cingulate and forward intrinsic connectivity between the amygdala and the anterior cingulate as the best fit. CBD but not Delta(9)-THC disrupted forward connectivity between these regions during the neural response to fearful faces. This is the first study to show that the disruption of prefrontal-subocrtical connectivity by CBD may represent neurophysiological correlates of its anxiolytic properties.
Resumo:
Background: Cigarette smoke exposure is considered an important negative prognostic factor for chronic rhinosinusitis (CRS) patients. However, there is no clear mechanistic evidence implicating cigarette smoke exposure in the poor clinical evolution of the disease or in the maintenance of the inflammatory state characterizing CRS. This study aimed to evaluate the effects of cigarette smoke exposure on respiratory cilia differentiation. Methods: Monse nasal septal epithelium cultures grown at an air-liquid interface were used as a model of respiratory epithelium. After 5 days of cell growth, cultures were exposed to air on the apical surface. Additionally, cigarette smoke condensate (CSC; the particulate phase of tobacco smoke) or cigarette smoke extract (CSE; the volatile phase) Were diluted in the basolateral compartment in different concentrations. After 15 days of continuous exposure, scanning electron microscopy and immunofluorescence for type IV tubulin were used to determine presence and maturation of cilia. Transepithelial resistance was also recorded to evaluate confluence and physiological barrier integrity. Results: CSC and CSE impair ciliogenesis in a dose-dependent manner with notable effects in concentrations higher than 30 mu g/mL, yielding >70% nonciliation and shorter cilia compared With control. No statistical difference on transepithelial resistance was evident. Conclusion: CSC and CSE exposure negatively impacts ciliogenesis of respiratory cells at concentrations not effecting transepithelial resistance. The impairment on ciliogenesis reduce the mucociliary clearance apparatuts after injury and/or infection and may explain the poor response to therapy for CRS patients exposed to tobacco smoke.