203 resultados para stars: atmospheres


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aims. We determine the iron distribution function (IDF) for bulge field stars, in three different fields along the Galactic minor axis and at latitudes b = -4 degrees, b = -6 degrees, and b = -12 degrees. A fourth field including NGC 6553 is also included in the discussion. Methods. About 800 bulge field K giants were observed with the GIRAFFE spectrograph of FLAMES@VLT at spectral resolution R similar to 20 000. Several of them were observed again with UVES at R similar to 45 000 to insure the accuracy of the measurements. The LTE abundance analysis yielded stellar parameters and iron abundances that allowed us to construct an IDF for the bulge that, for the first time, is based on high-resolution spectroscopy for each individual star. Results. The IDF derived here is centered on solar metallicity, and extends from [Fe/H] similar to -1.5 to [Fe/H] similar to + 0.5. The distribution is asymmetric, with a sharper cutoff on the high-metallicity side, and it is narrower than previously measured. A variation in the mean metallicity along the bulge minor axis is clearly between b = -4 degrees and b = -6 degrees ([Fe/H] decreasing similar to by 0.6 dex per kpc). The field at b = -12 degrees. is consistent with the presence of a gradient, but its quantification is complicated by the higher disk/bulge fraction in this field. Conclusions. Our findings support a scenario in which both infall and outflow were important during the bulge formation, and then suggest the presence of a radial gradient, which poses some challenges to the scenario in which the bulge would result solely from the vertical heating of the bar.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aims. Solar colors have been determined on the uvby-beta photometric system to test absolute solar fluxes, to examine colors predicted by model atmospheres as a function of stellar parameters (T(eff), log g, [Fe/H]), and to probe zero-points of T(eff) and metallicity scales. Methods. New uvby-beta photometry is presented for 73 solar-twin candidates. Most stars of our sample have also been observed spectroscopically to obtain accurate stellar parameters. Using the stars that most closely resemble the Sun, and complementing our data with photometry available in the literature, the solar colors on the uvby-beta system have been inferred. Our solar colors are compared with synthetic solar colors computed from absolute solar spectra and from the latest Kurucz (ATLAS9) and MARCS model atmospheres. The zero-points of different T(eff) and metallicity scales are verified and corrections are proposed. Results. Our solar colors are (b - y)(circle dot) = 0.4105 +/- 0.0015, m(1,circle dot) = 0.2122 +/- 0.0018, c(1,circle dot) = 0.3319 +/- 0.0054, and beta(circle dot) = 2.5915 +/- 0.0024. The (b - y)(circle dot) and m(1,circle dot) colors obtained from absolute spectrophotometry of the Sun agree within 3-sigma with the solar colors derived here when the photometric zero-points are determined from either the STIS HST observations of Vega or an ATLAS9 Vega model, but the c(1,circle dot) and beta(circle dot) synthetic colors inferred from absolute solar spectra agree with our solar colors only when the zero-points based on the ATLAS9 model are adopted. The Kurucz solar model provides a better fit to our observations than the MARCS model. For photometric values computed from the Kurucz models, (b - y)(circle dot) and m(1,circle dot) are in excellent agreement with our solar colors independently of the adopted zero-points, but for c(1,circle dot) and beta circle dot agreement is found only when adopting the ATLAS9 zero-points. The c(1,circle dot) color computed from both the Kurucz and MARCS models is the most discrepant, probably revealing problems either with the models or observations in the u band. The T(eff) calibration of Alonso and collaborators has the poorest performance (similar to 140 K off), while the relation of Casagrande and collaborators is the most accurate (within 10 K). We confirm that the Ramirez & Melendez uvby metallicity calibration, recommended by Arnadottir and collaborators to obtain [Fe/H] in F, G, and K dwarfs, needs a small (similar to 10%) zero-point correction to place the stars and the Sun on the same metallicity scale. Finally, we confirm that the c(1) index in solar analogs has a strong metallicity sensitivity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report optical observations of the luminous blue variable (LBV) HR Carinae which show that the star has reached a visual minimum phase in 2009. More importantly, we detected absorptions due to Si lambda lambda 4088-4116. To match their observed line profiles from 2009 May, a high rotational velocity of nu(rot) similar or equal to 150 +/- 20 km s(-1) is needed (assuming an inclination angle of 30 degrees), implying that HR Car rotates at similar or equal to 0.88 +/- 0.2 of its critical velocity for breakup (nu(crit)). Our results suggest that fast rotation is typical in all strong-variable, bona fide galactic LBVs, which present S-Dor-type variability. Strong-variable LBVs are located in a well-defined region of the HR diagram during visual minimum (the ""LBV minimum instability strip""). We suggest this region corresponds to where nu(crit) is reached. To the left of this strip, a forbidden zone with nu(rot)/nu(crit) > 1 is present, explaining why no LBVs are detected in this zone. Since dormant/ex LBVs like P Cygni and HD 168625 have low nu(rot), we propose that LBVs can be separated into two groups: fast-rotating, strong-variable stars showing S-Dor cycles (such as AG Car and HR Car) and slow-rotating stars with much less variability (such as P Cygni and HD 168625). We speculate that supernova (SN) progenitors which had S-Dor cycles before exploding (such as in SN 2001ig, SN 2003bg, and SN 2005gj) could have been fast rotators. We suggest that the potential difficulty of fast-rotating Galactic LBVs to lose angular momentum is additional evidence that such stars could explode during the LBV phase.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Barium stars are optimal sites for studying the correlations between the neutron-capture elements and other species that may be depleted or enhanced, because they act as neutron seeds or poisons during the operation of the s-process. These data are necessary to help constrain the modeling of the neutron-capture paths and explain the s-process abundance curve of the solar system. Chemical abundances for a large number of barium stars with different degrees of s-process excesses, masses, metallicities, and evolutionary states are a crucial step towards this goal. We present abundances of Mn, Cu, Zn, and various light and heavy elements for a sample of barium and normal giant stars, and present correlations between abundances contributed to different degrees by the weak-s, mains, and r-processes of neutron capture, between Fe-peak elements and heavy elements. Data from the literature are also considered in order to better study the abundance pattern of peculiar stars. The stellar spectra were observed with FEROS/ESO. The stellar atmospheric parameters of the eight barium giant stars and six normal giants that we analyzed lie in the range 4300 < T(eff)/K < 5300, -0.7 < [Fe/H] <= 0.12 and 1.5 <= log g < 2.9. Carbon and nitrogen abundances were derived by spectral synthesis of the molecular bands of C(2), CH, and CN. For all other elements we used the atomic lines to perform the spectral synthesis. A very large scatter was found mainly for the Mn abundances when data from the literature were considered. We found that [Zn/Fe] correlates well with the heavy element excesses, its abundance clearly increasing as the heavy element excesses increase, a trend not shown by the [Cu/Fe] and [Mn/Fe] ratios. Also, the ratios involving Mn, Cu, and Zn and heavy elements usually show an increasing trend toward higher metallicities. Our results suggest that a larger fraction of the Zn synthesis than of Cu is owed to massive stars, and that the contribution of the main-s process to the synthesis of both elements is small. We also conclude that Mn is mostly synthesized by SN Ia, and that a non-negligible fraction of the synthesis of Mn, Cu, and Zn is owed to the weak s-process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Context. Abundance variations in moderately metal-rich globular clusters can give clues about the formation and chemical enrichment of globular clusters. Aims. CN, CH, Na, Mg and Al indices in spectra of 89 stars of the template metal-rich globular cluster M71 are measured and implications on internal mixing are discussed. Methods. Stars from the turn-off up to the Red Giant Branch (0.87 < log g < 4.65) observed with the GMOS multi-object spectrograph at the Gemini-North telescope are analyzed. Radial velocities, colours, effective temperatures, gravities and spectral indices are determined for the sample. Results. Previous findings related to the CN bimodality and CN-CH anticorrelation in stars of M71 are confirmed. We also find a CN-Na correlation, and Al-Na, as well as an Mg(2)-Al anticorrelation. Conclusions. A combination of convective mixing and a primordial pollution by AGB or massive stars in the early stages of globular cluster formation is required to explain the observations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report near-infrared spectroscopic observations of the Eta Carinae massive binary system during 2008-2009 using the CRIRES spectrograph mounted on the 8m UT 1 Very Large Telescope (VLT Antu). We detect a strong, broad absorption wing in He I lambda 10833 extending up to -1900 km s(-1) across the 2009.0 spectroscopic event. Analysis of archival Hubble Space Telescope/Space Telescope Imaging Spectrograph ultraviolet and optical data identifies a similar high-velocity absorption (up to -2100 km s(-1)) in the ultraviolet resonance lines of Si IV lambda lambda 1394, 1403 across the 2003.5 event. Ultraviolet resonance lines from low-ionization species, such as Si II lambda lambda 1527, 1533 and CII lambda lambda 1334, 1335, show absorption only up to -1200 km s(-1), indicating that the absorption with velocities -1200 to -2100 km s(-1) originates in a region markedly more rapidly moving and more ionized than the nominal wind of the primary star. Seeing-limited observations obtained at the 1.6m OPD/LNA telescope during the last four spectroscopic cycles of Eta Carinae (1989-2009) also show high-velocity absorption in He I lambda 10833 during periastron. Based on the large OPD/LNA dataset, we determine that material with velocities more negative than -900 km s(-1) is present in the phase range 0.976 <= phi <= 1.023 of the spectroscopic cycle, but absent in spectra taken at phi <= 0.947 and phi >= 1.049. Therefore, we constrain the duration of the high-velocity absorption to be 95 to 206 days (or 0.047 to 0.102 in phase). We propose that the high-velocity absorption component originates in shocked gas in the wind-wind collision zone, at distances of 15 to 45 AU in the line-of-sight to the primary star. With the aid of three-dimensional hydrodynamical simulations of the wind-wind collision zone, we find that the dense high-velocity gas is along the line-of-sight to the primary star only if the binary system is oriented in the sky such that the companion is behind the primary star during periastron, corresponding to a longitude of periastron of omega similar to 240 degrees-270 degrees. We study a possible tilt of the orbital plane relative to the Homunculus equatorial plane and conclude that our data are broadly consistent with orbital inclinations in the range i = 40 degrees-60 degrees.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We obtained long-slit spectra of high signal-to-noise ratio of the galaxy M32 with the Gemini Multi-Object Spectrograph at the Gemini-North telescope. We analysed the integrated spectra by means of full spectral fitting in order to extract the mixture of stellar populations that best represents its composite nature. Three different galactic radii were analysed, from the nuclear region out to 2 arcmin from the centre. This allows us to compare, for the first time, the results of integrated light spectroscopy with those of resolved colour-magnitude diagrams from the literature. As a main result we propose that an ancient and an intermediate-age population co-exist in M32, and that the balance between these two populations change between the nucleus and outside one effective radius (1r(eff)) in the sense that the contribution from the intermediate population is larger at the nuclear region. We retrieve a smaller signal of a young population at all radii whose origin is unclear and may be a contamination from horizontal branch stars, such as the ones identified by Brown et al. in the nuclear region. We compare our metallicity distribution function for a region 1 to 2 arcmin from the centre to the one obtained with photometric data by Grillmair et al. Both distributions are broad, but our spectroscopically derived distribution has a significant component with [Z/Z(circle dot)] <= -1, which is not found by Grillmair et al.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show that the significantly different effective temperatures (T(eff)) achieved by the luminous blue variable AG Carinae during the consecutive visual minima of 1985-1990 (T(eff) similar or equal to 22,800 K) and 2000-2001 (T(eff) similar or equal to 17,000 K) place the star on different sides of the bistability limit, which occurs in line-driven stellar winds around T(eff) similar to 21,000 K. Decisive evidence is provided by huge changes in the optical depth of the Lyman continuum in the inner wind as T(eff) changes during the S Dor cycle. These changes cause different Fe ionization structures in the inner wind. The bistability mechanism is also related to the different wind parameters during visual minima: the wind terminal velocity was 2-3 times higher and the mass-loss rate roughly two times smaller in 1985-1990 than in 2000-2003. We obtain a projected rotational velocity of 220 +/- 50 km s(-1) during 1985-1990 which, combined with the high luminosity (L(star) = 1.5 x 10(6) L(circle dot)), puts AG Car extremely close to the Eddington limit modified by rotation (Omega Gamma limit): for an inclination angle of 90 degrees, Gamma(Omega) greater than or similar to 1.0 for M(circle dot) less than or similar to 60. Based on evolutionary models and mass budget, we obtain an initial mass of similar to 100 M(circle dot) and a current mass of similar to 60-70 M(circle dot) for AG Car. Therefore, AG Car is close to, if not at, the Omega Gamma limit during visual minimum. Assuming M = 70 M(circle dot), we find that Gamma(Omega) decreases from 0.93 to 0.72 as AG Car expands toward visual maximum, suggesting that the star is not above the Eddington limit during maximum phases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. The evolution of the Milky Way bulge and its relationship with the other Galactic populations is still poorly understood. The bulge has been suggested to be either a merger-driven classical bulge or the product of a dynamical instability of the inner disk. Aims. To probe the star formation history, the initial mass function and stellar nucleosynthesis of the bulge, we performed an elemental abundance analysis of bulge red giant stars. We also completed an identical study of local thin disk, thick disk and halo giants to establish the chemical differences and similarities between the various populations. Methods. High-resolution infrared spectra of 19 bulge giants and 49 comparison giants in the solar neighborhood were acquired with Gemini/Phoenix. All stars have similar stellar parameters but cover a broad range in metallicity. A standard 1D local thermodynamic equilibrium analysis yielded the abundances of C, N, O and Fe. A homogeneous and differential analysis of the bulge, halo, thin disk and thick disk stars ensured that systematic errors were minimized. Results. We confirm the well-established differences for [O/Fe] (at a given metallicity) between the local thin and thick disks. For the elements investigated, we find no chemical distinction between the bulge and the local thick disk, which is in contrast to previous studies relying on literature values for disk dwarf stars in the solar neighborhood. Conclusions. Our findings suggest that the bulge and local thick disk experienced similar, but not necessarily shared, chemical evolution histories. We argue that their formation timescales, star formation rates and initial mass functions were similar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. Unevolved metal-poor stars constitute a fossil record of the early Galaxy, and can provide invaluable information on the properties of the first generations of stars. Binary systems also provide direct information on the stellar masses of their member stars. Aims. The purpose of this investigation is a detailed abundance study of the double-lined spectroscopic binary CS 22876-032, which comprises the two most metal-poor dwarfs known. Methods. We used high-resolution, high-S/N ratio spectra from the UVES spectrograph at the ESO VLT telescope. Long-term radial-velocity measurements and broad-band photometry allowed us to determine improved orbital elements and stellar parameters for both components. We used OSMARCS 1D models and the TURBOSPECTRUM spectral synthesis code to determine the abundances of Li, O, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Fe, Co and Ni. We also used the (COBOLD)-B-5 model atmosphere code to compute the 3D abundance corrections, notably for Li and O. Results. We find a metallicity of [Fe/H] similar to -3.6 for both stars, using 1D models with 3D corrections of similar to -0.1 dex from averaged 3D models. We determine the oxygen abundance from the near-UV OH bands; the 3D corrections are large, -1 and -1.5 dex for the secondary and primary respectively, and yield [O/Fe] similar to 0.8, close to the high-quality results obtained from the [OI] 630 nm line in metal-poor giants. Other [alpha/Fe] ratios are consistent with those measured in other dwarfs and giants with similar [Fe/H], although Ca and Si are somewhat low ([X/Fe] less than or similar to 0). Other element ratios follow those of other halo stars. The Li abundance of the primary star is consistent with the Spite plateau, but the secondary shows a lower abundance; 3D corrections are small. Conclusions. The Li abundance in the primary star supports the extension of the Spite Plateau value at the lowest metallicities, without any decrease. The low abundance in the secondary star could be explained by endogenic Li depletion, due to its cooler temperature. If this is not the case, another, yet unknown mechanism may be causing increased scatter in A( Li) at the lowest metallicities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on high-resolution (R approximate to 42 000 to 48 000) and high signal-to-noise (S/N approximate to 50 to 150) spectra obtained with UVES/VLT, we present detailed elemental abundances (O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, Y, and Ba) and stellar ages for 12 new microlensed dwarf and subgiant stars in the Galactic bulge. Including previous microlensing events, the sample of homogeneously analysed bulge dwarfs has now grown to 26. The analysis is based on equivalent width measurements and standard 1-D LTE MARCS model stellar atmospheres. We also present NLTE Li abundances based on line synthesis of the (7)Li line at 670.8 nm. The results from the 26 microlensed dwarf and subgiant stars show that the bulge metallicity distribution (MDF) is double-peaked; one peak at [Fe/H] approximate to -0.6 and one at [Fe/H] approximate to +0.3, and with a dearth of stars around solar metallicity. This is in contrast to the MDF derived from red giants in Baade's window, which peaks at this exact value. A simple significance test shows that it is extremely unlikely to have such a gap in the microlensed dwarf star MDF if the dwarf stars are drawn from the giant star MDF. To resolve this issue we discuss several possibilities, but we can not settle on a conclusive solution for the observed differences. We further find that the metal-poor bulge dwarf stars are predominantly old with ages greater than 10 Gyr, while the metal-rich bulge dwarf stars show a wide range of ages. The metal-poor bulge sample is very similar to the Galactic thick disk in terms of average metallicity, elemental abundance trends, and stellar ages. Speculatively, the metal-rich bulge population might be the manifestation of the inner thin disk. If so, the two bulge populations could support the recent findings, based on kinematics, that there are no signatures of a classical bulge and that the Milky Way is a pure-disk galaxy. Also, recent claims of a flat IMF in the bulge based on the MDF of giant stars may have to be revised based on the MDF and abundance trends probed by our microlensed dwarf stars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. The chemical composition of extremely metal-poor stars (EMP stars; [Fe/H] < similar to -3) is a unique tracer of early nucleosynthesis in the Galaxy. As such stars are rare, we wish to find classes of luminous stars which can be studied at high spectral resolution. Aims. We aim to determine the detailed chemical composition of the two EMP stars CS 30317-056 and CS 22881-039, originally thought to be red horizontal-branch (RHB) stars, and compare it to earlier results for EMP stars as well as to nucleosynthesis yields from various supernova (SN) models. In the analysis, we discovered that our targets are in fact the two most metal-poor RR Lyrae stars known. Methods. Our detailed abundance analysis, taking into account the variability of the stars, is based on VLT/UVES spectra (R similar or equal to 43 000) and 1D LTE OSMARCS model atmospheres and synthetic spectra. For comparison with SN models we also estimate NLTE corrections for a number of elements. Results. We derive LTE abundances for the 16 elements O, Na, Mg, Al, Si, S, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Sr and Ba, in good agreement with earlier values for EMP dwarf, giant and RHB stars. Li and C are not detected in either star. NLTE abundance corrections are newly calculated for O and Mg and taken from the literature for other elements. The resulting abundance pattern is best matched by model yields for supernova explosions with high energy and/or significant asphericity effects. Conclusions. Our results indicate that, except for Li and C, the surface composition of EMP RR Lyr stars is not significantly affected by mass loss, mixing or diffusion processes; hence, EMP RR Lyr stars should also be useful tracers of the chemical evolution of the early Galactic halo. The observed abundance ratios indicate that these stars were born from an ISM polluted by energetic, massive (25-40 M(circle dot)) and/or aspherical supernovae, but the NLTE corrections for Sc and certain other elements do play a role in the choice of model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on oxygen abundances determined from medium-resolution near-infrared spectroscopy for a sample of 57 carbon-enhanced metal-poor (CEMP) stars selected from the Hamburg/ESO Survey. The majority of our program stars exhibit oxygen-to-iron ratios in the range +0.5 < [O/Fe]< + 2.0. The [O/Fe] values for this sample are statistically compared to available high-resolution estimates for known CEMP stars as well as to high-resolution estimates for a set of carbon-normal metal-poor stars. Carbon, nitrogen, and oxygen abundance patterns for a sub-sample of these stars are compared to yield predictions for very metal-poor asymptotic giant branch (AGB) abundances in the recent literature. We find that the majority of our sample exhibit patterns that are consistent with previously studied CEMP stars having s-process-element enhancements and thus have very likely been polluted by carbon- and oxygen-enhanced material transferred from a metal-poor AGB companion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. The detailed chemical abundances of extremely metal-poor (EMP) stars are key guides to understanding the early chemical evolution of the Galaxy. Most existing data, however, treat giant stars that may have experienced internal mixing later. Aims. We aim to compare the results for giants with new, accurate abundances for all observable elements in 18 EMP turno. stars. Methods. VLT/UVES spectra at R similar to 45 000 and S/N similar to 130 per pixel (lambda lambda 330-1000 nm) are analysed with OSMARCS model atmospheres and the TURBOSPECTRUM code to derive abundances for C, Mg, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, and Ba. Results. For Ca, Ni, Sr, and Ba, we find excellent consistency with our earlier sample of EMP giants, at all metallicities. However, our abundances of C, Sc, Ti, Cr, Mn and Co are similar to 0.2 dex larger than in giants of similar metallicity. Mg and Si abundances are similar to 0.2 dex lower (the giant [Mg/Fe] values are slightly revised), while Zn is again similar to 0.4 dex higher than in giants of similar [Fe/H] (6 stars only). Conclusions. For C, the dwarf/giant discrepancy could possibly have an astrophysical cause, but for the other elements it must arise from shortcomings in the analysis. Approximate computations of granulation (3D) effects yield smaller corrections for giants than for dwarfs, but suggest that this is an unlikely explanation, except perhaps for C, Cr, and Mn. NLTE computations for Na and Al provide consistent abundances between dwarfs and giants, unlike the LTE results, and would be highly desirable for the other discrepant elements as well. Meanwhile, we recommend using the giant abundances as reference data for Galactic chemical evolution models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Searches for field horizontal-branch (FHB) stars in the halo of the Galaxy in the past have been carried out by several techniques, such as objective-prism surveys and visual or infrared photometric surveys. By choosing adequate color criteria, it is possible to improve the efficiency of identifying bona fide FHB stars among the other objects that exhibit similar characteristics, such as main-sequence A-stars, blue stragglers, subdwarfs, etc. In this work, we report the results of a spectroscopic survey carried out near the south Galactic pole intended to validate FHB stars originally selected from the HK objective-prism survey of Beers and colleagues, based on near-infrared color indices. A comparison between the stellar spectra obtained in this survey with theoretical stellar atmosphere models allows us to determine T(eff), log g, and [Fe/H] for 13 stars in the sample. Stellar temperatures were calculated from measured (B-V)(o), when this measurement was available (16 stars). The color index criteria adopted in this work are shown to correctly classify 30% of the sample as FHB, 25% as non-FHB (main-sequence stars and subdwarfes), whereas 40% could not be distinguished between FHB and main-sequence stars. We compare the efficacy of different color criteria in the literature intended to select FHB stars, and discuss the use of the Mg II 4481 line to estimate the metallicity.