27 resultados para região Neotropical.
Resumo:
Extensive population structuring is known to occur in Anopheles darlingi, the primary malaria vector of the Neotropics. We analysed the phylogeographic structure of the species using the mitochondrial cytochrome oxidase I marker. Diversity is divided into six main population groups in South America: Colombia, central Amazonia, southern Brazil, south-eastern Brazil, and two groups in north-east Brazil. The ancestral distribution of the taxon is hypothesized to be central Amazonia, and there is evidence of expansion from this region during the late Pleistocene. The expansion was not a homogeneous front, however, with at least four subgroups being formed due to geographic barriers. As the species spread, populations became isolated from each other by the Amazon River and the coastal mountain ranges of south-eastern Brazil and the Andes. Analyses incorporating distances around these barriers suggest that the entire South American range of An. darlingi is at mutation-dispersal-drift equilibrium. Because the species is distributed throughout such a broad area, the limited dispersal across some landscape types promotes differentiation between otherwise proximate populations. Moreover, samples from the An. darlingi holotype location in Rio de Janeiro State are substantially derived from all other populations, implying that there may be additional genetic differences of epidemiological relevance. The results obtained contribute to our understanding of gene flow in this species and allow the formulation of human mosquito health protocols in light of the potential population differences in vector capacity or tolerance to control strategies. (C) 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 854-866.
Resumo:
The diversity of floral forms has long been considered a prime example of radiation through natural selection. However, little is still known about the evolution of floral traits, a critical piece of evidence for the understanding of the processes that may have driven flower evolution. We studied the pattern of evolution of quantitative floral traits in a group of Neotropical lianas (Bignonieae, Bignoniaceae) and used a time-calibrated phylogeny as basis to: (1) test for phylogenetic signal in 16 continuous floral traits; (2) evaluate the rate of evolution in those traits; and (3) reconstruct the ancestral state of the individual traits. Variation in floral traits among extant species of Bignonieae was highly explained by their phylogenetic history. However, opposite signals were found in floral traits associated with the attraction of pollinators (calyx and corolla) and pollen transfer (androecium and gynoecium), suggesting a differential role of selection in different floral whorls. Phylogenetic independent contrasts indicate that traits evolved at different rates, whereas ancestral character state reconstructions indicate that the ancestral size of most flower traits was larger than the mean observed sizes of the same traits in extant species. The implications of these patterns for the reproductive biology of Bignonieae are discussed. (C) 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102, 378-390.
Resumo:
Previous anatomical studies have been restricted to the foliar aspects of Pilocarpus. However, no anatomical studies analyzing the foliar aspects of Pilocarpus in relation to related genera have been carried out. Therefore, the aim of this study was to identify characters for future taxonomic and phylogenetic studies in Rutaceae, particularly in Pilocarpus, and to discuss the characteristics associated with the simple or compound leaf condition for the group. The petiole and the leaf blade of 14 neotropical Rutaceae species were analyzed, and the following characteristics were observed in all leaves studied: stomata on both surfaces; secretory cavities, including mesophyll type; camptodromous-brochidodromous venation pattern; and free vascular cylinder in the basal region of the petiole. Additional promising characters were identified for future taxonomic and phylogenetic studies in the Rutaceae family, especially for the Pilocarpus genera.
Resumo:
The defensive, secretions, of five neotropical) species of harvestmen, (Opiliones: Gonyleptidae) from the Brazilian Atlantic Forest were analyzed and chemically characterized by GC-MS and NMR Methods. Three of the species, Cobania picea, Roweria virescens, and Serracutisoma proximum, secrete a mixture of 2,3-dimethyl-1,4-benzoquinone and 2-ethyl-3methyl-1,4,4-benzoquinone. The secretions produced,by the Other two species Iporangaia pustulosa and Neosadocus maximus, contain 1-hepten-3-one, 5-methyl-1-hexen-3-one, and 1-(6-butyl-3,4-dihydro-2H-pyran-2-yl)pentanone. (1)as major components, as well as,2,3-dimethyl-1.,4-benzoquinone and 2-ethyl-3 methyl-1,4-benzoquinone as minor,constituents. The. dihydropyran 1-(6-butyl-3,4-dihydro-2H-pyran-2-yl)pentanone (1) is a new natural product, composed of two 1-hepten-3-one, subunits formally linked in a hetero-Diels-Alder reaction. The natural product was proven to be racemic, and its biogenetic origin is discussed.
Resumo:
In arthropods, most cases of morphological dimorphism within males are the result of a conditional evolutionarily stable strategy (ESS) with status-dependent tactics. In conditionally male-dimorphic species, the status` distributions of male morphs often overlap, and the environmentally cued threshold model (ET) states that the degree of overlap depends on the genetic variation in the distribution of the switchpoints that determine which morph is expressed in each value of status. Here we describe male dimorphism and alternative mating behaviors in the harvestman Serracutisoma proximum. Majors express elongated second legs and use them in territorial fights; minors possess short second legs and do not fight, but rather sneak into majors` territories and copulate with egg-guarding females. The static allometry of second legs reveals that major phenotype expression depends on body size (status), and that the switchpoint underlying the dimorphism presents a large amount of genetic variation in the population, which probably results from weak selective pressure on this trait. With a mark-recapture study, we show that major phenotype expression does not result in survival costs, which is consistent with our hypothesis that there is weak selection on the switchpoint. Finally, we demonstrate that switchpoint is independent of status distribution. In conclusion, our data support the ET model prediction that the genetic correlation between status and switchpoint is low, allowing the status distribution to evolve or to fluctuate seasonally, without any effect on the position of the mean switchpoint.
Resumo:
This study tests predictions of the hypothesis of evolution of paternal care via sexual selection by using the Neotropical harvestman Pseudopucrolia sp. as the model organism. Females use natural cavities in roadside banks as nesting sites, which are defended by males against other males. Females leave the nests after oviposition, and all postzygotic parental care is accomplished by males, which protect the eggs and nymphs from predators. We provided artificial mud nests to individuals in the laboratory and conducted observations on the reproduction of the species. Male reproductive success was directly related to nest ownership time: the longer a male held a nest, the higher his chances of obtaining copulations. All males that succeeded in mating and obtaining one clutch eventually mated with additional females that added eggs to the clutch. Thus, desirable males were not limited to monogamy by paternal care. Experimental manipulations demonstrated that guarding males were more attractive to females than were nonguarding males and also that males guarded unrelated eggs. Finally, we found that females and nonguarding males spent more time foraging than guarding males. We use our data to contrast hypotheses on the origin and maintenance of paternal care and to provide a critical assessment of the hypothesis of the evolution of paternal care via sexual selection. (C) 2009 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
The evolution of sexually dimorphic traits has been the focus of much theoretical work, but empirical approaches to this topic have not been equally prolific. Males of the neotropical family Gonyleptidae usually present a strong fourth pair of legs armed with spines, but their functional significance is unknown. We investigated the putative functions of the leg armature in the harvestman Neosadocus maximus. Being a non-visual species. the spines on male legs can only be perceived by females through physical contact. Thus, we could expect females to touch the armature on the legs of their mates if they were to evaluate it. However, we found no support for this hypothesis. We did show that (1) leg armature is used as a weapon in contests between mates and (2) spines and associated sensilla are sexually dimorphic structures involved in ""nipping behavior"", during which a winner emerged in most fights. Finally, we demonstrate that five body structures directly involved in male-male fights show positive allometry in males. presenting slopes higher than 1, whereas the same structures show either no or negative allometry in the case of females. In conclusion, leg armature in male harvestmen is clearly used as a device in intrasexual contests. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Although studies classify the polygynous mating system of a given species into female defense polygyny (FDP) or resource defense polygyny (RDP), the boundary between these two categories is often slight. Males of some species may even shift between these two types of polygyny in response to temporal variation in social and environmental conditions. Here, we examine the mating system of the Neotropical harvestman Acutisoma proximum and, in order to assess if mate acquisition in males corresponds to FDP or RDP, we tested four contrasting predictions derived from the mating system theory. At the beginning of the reproductive season, males fight with other males for the possession of territories on the vegetation where females will later oviposit, as expected in RDP. Females present a marked preference for specific host plant species, and males establish their territories in areas where these host plants are specially abundant, which is also expected in RDP. Later in the reproductive season, males reduce their patrolling activity and focus on defending individual females that are ovipositing inside their territories, as what occurs in FDP. This is the first described case of an arachnid that exhibits a shift in mating system over the reproductive season, revealing that we should be cautious when defining the mating system of a species based on few observations concentrated in a brief period.
Resumo:
Edge effects are suggested to have great impact on the persistence of species in fragmented landscapes. We tested edge avoidance by forest understory passerines in the Brazilian Atlantic Rainforest and also compared their mobility and movement patterns in contiguous and fragmented landscapes to assess whether movements would increase in the fragmented landscape. Between 2003 and 2005, 96 Chiroxiphia caudata, 38 Pyriglena leucoptera and 27 Sclerurus scansor were radio-tracked. The most strictly forest species C. caudata and S scansor avoided forest edges while P leucoptera showed affinities for the edge Both sensitive species showed larger mean step length and maximal observed daily distance in the fragmented forest versus the unfragmented forest. P. leucoptera did not show any significant difference. There were no significant differences in proportional daily home range use for any of the three species. Our results suggested that fragmentation and the consequent increase in edge areas do influence movement behavior of sensitive forest understory birds that avoided the use of edges and increased the speed and distance they covered daily. For the most restricted forest species, it would be advisable to protect larger patches of forest instead of many small or medium fragments connected by narrow corridors. However, by comparing our data with that obtained earlier, we concluded that movement behavior of resident birds differs from that of dispersing birds and might not allow to infer functional connectivity or landscape-scale sensitivity to fragmentation; a fact that should be taken into consideration when suggesting conservation strategies. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
An organism is built through a series of contingent factors, yet it is determined by historical, physical, and developmental constraints. A constraint should not be understood as an absolute obstacle to evolution, as it may also generate new possibilities for evolutionary change. Modularity is, in this context, an important way of organizing biological information and has been recognized as a central concept in evolutionary biology bridging on developmental, genetics, morphological, biochemical, and physiological studies. In this article, we explore how modularity affects the evolution of a complex system in two mammalian lineages by analyzing correlation, variance/covariance, and residual matrices (without size variation). We use the multivariate response to selection equation to simulate the behavior of Eutheria and Metharia skulls in terms of their evolutionary flexibility and constraints. We relate these results to classical approaches based on morphological integration tests based on functional/developmental hypotheses. Eutherians (Neotropical primates) showed smaller magnitudes of integration compared with Metatheria (didelphids) and also skull modules more clearly delimited. Didelphids showed higher magnitudes of integration and their modularity is strongly influenced by within-groups size variation to a degree that evolutionary responses are basically aligned with size variation. Primates still have a good portion of the total variation based on size; however, their enhanced modularization allows a broader spectrum of responses, more similar to the selection gradients applied (enhanced flexibility). Without size variation, both groups become much more similar in terms of modularity patterns and magnitudes and, consequently, in their evolutionary flexibility. J. Exp. Zool. (Mol. Dev. Evol.) 314B:663-683, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
The hypothesis of gene flow between species with large differences in chromosome numbers has rarely been tested in the wild, mainly because species of different ploidy are commonly assumed to be reproductively isolated from each other because of instantaneous and strong postzygotic barriers. In this study, a broad-scale survey of molecular variation was carried out between two orchid species with different ploidy levels: Epidendrum fulgens (2n = 2x = 24 chromosomes) and Epidendrum puniceoluteum (2n = 4x = 52 chromosomes). To test the strength of their reproductive barriers, we investigated the distribution of genetic variation in sympatric and allopatric populations of these two species and conducted crossing experiments. Nuclear and plastid microsatellite loci were used to genotype 463 individuals from eight populations across the geographical range of both species along the Brazilian coastal plain. All six sympatric populations analysed presented hybrid zones, indicating that hybridization between E. fulgens and E. puniceoluteum is a common phenomenon. Bayesian assignment analysis detected the presence of F(1) and F(2) individuals and also signs of introgression, demonstrating a high potential for interspecific gene flow. Introgression occurs preferentially from E. fulgens to E. puniceoluteum. Pure parental individuals of both species display strong genotype-habitat associations, indicating that environment-dependent selection could be acting in all hybrid zones. This study suggests that hybridization and introgression are evolutionary processes playing a role in the diversification of Epidendrum and indicates the importance of investigations of hybrid zones in understanding reproductive barriers and speciation processes in Neotropical orchid species.
Resumo:
The genus Eigenmannia (Teleostei: Gymnotiformes), a widely distributed fish genus from the Neotropical region, presents very complex morphological patterns and many taxonomic problems. It is suggested that this genus harbors a species complex that is hard to differentiate using only morphological characteristics. As a result, many species of Eigenmannia may be currently gathered under a common name. With the objective of providing new tools for species characterization in this group, an analysis of the polymorphism of DNA inter-simple sequence repeats (ISSR), obtained by single primer amplification reaction (SPAR), combined with karyotype identification, was carried out in specimens sampled from populations of the Upper Parana, So Francisco and Amazon river basins (Brazil). Specific ISSR patterns generated by primers (AAGC)(4) and (GGAC)(4) were found to characterize the ten cytotypes analyzed, even though the cytotypes 2n = 38 and 2n = 38 XX:XY, from the Upper Parana basin, share some ISSR amplification patterns. The geographical distribution of all Eigenmannia specimens sampled was inferred, showing the cytotype 2n = 31/2n = 32 as the most frequent and largely distributed in the Upper Parana basin. The cytotype 2n = 34 was reported for the first time in the genus Eigenmania, restricted to the So Francisco basin. Polymorphic ISSR patterns were also detected for each cytotype. Considering our results and the data reported previously in the literature, it is suggested that many of the forms of Eigenmannia herein analyzed might be regarded as different species. This work reinforces the importance of employing diverse approaches, such as molecular and cytogenetic characterization, to address taxonomic and evolutionary issues.
Resumo:
Stingless bees of the genus Partamona are distributed from southern Mexico to southern Brazil. This genus has been subject to different approaches to solve questions concerning general biology, taxonomy, systematics and biogeography, but population studies applying molecular techniques are inexistent. We analyzed the genetic structure of P. helleri across its geographic distribution along the coastal Atlantic tropical rainforest in Brazil. Ten mtDNA haplotypes were observed in 47 colonies of P. helleri of which some were exclusive and others shared among geographic sub-groups. Statistical analysis showed high genetic differentiation between geographic areas sampled. Fragmentation of the Atlantic forest during Pleistocene glaciations is discussed as a possible cause of the present haplotype distribution and frequency.
Resumo:
Neotropical forests have brought forth a large proportion of the world`s terrestrial biodiversity, but the underlying evolutionary mechanisms and their timing require further elucidation. Despite insights gained from phylogenetic studies, uncertainties about molecular clock rates have hindered efforts to determine the timing of diversification processes. Moreover, most molecular research has been detached from the extensive body of data on Neotropical geology and paleogeography. We here examine phylogenetic relationships and the timing of speciation events in a Neotropical flycatcher genus (Myiopagis) by using calibrations from modern geologic data in conjunction with a number of recently developed DNA sequence dating algorithms and by comparing these estimates with those based on a range of previously proposed molecular clock rates. We present a well-supported hypothesis of systematic relationships within the genus. Our age estimates of Myiopagis speciation events based on paleogeographic data are in close agreement with nodal ages derived from a ""traditional"" avian mitochondrial 2%/My clock, while contradicting other clock rates. Our comparative approach corroborates the consistency of the traditional avian mitochondrial clock rate of 2%/My for tyrant-flycatchers. Nevertheless, our results argue against the indiscriminate use of molecular clock rates in evolutionary research and advocate the verification of the appropriateness of the traditional clock rate by means of independent calibrations in individual studies. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Aim We present a molecular phylogenetic analysis of Brotogeris (Psittacidae) using several distinct and complementary approaches: we test the monophyly of the genus, delineate the basal taxa within it, uncover their phylogenetic relationships, and finally, based on these results, we perform temporal and spatial comparative analyses to help elucidate the historical biogeography of the Neotropical region. Location Neotropical lowlands, including dry and humid forests. Methods Phylogenetic relationships within Brotogeris were investigated using the complete sequences of the mitochondrial genes cyt b and ND2, and partial sequences of the nuclear intron 7 of the gene for Beta Fibrinogen for all eight species and 12 of the 17 taxa recognized within the genus (total of 63 individuals). In order to delinetae the basal taxa within the genus we used both molecular and plumage variation, the latter being based on the examination of 597 skin specimens. Dates of divergence and confidence intervals were estimated using penalized likelihood. Spatial and temporal comparative analyses were performed including several closely related parrot genera. Results Brotogeris was found to be a monophyletic genus, sister to Myiopsitta. The phylogenetic analyses recovered eight well-supported clades representing the recognized biological species. Although some described subspecies are diagnosably distinct based on morphology, there was generally little intraspecific mtDNA variation. The Amazonian species had different phylogenetic affinities and did not group in a monophyletic clade. Brotogeris diversification took place during the last 6 Myr, the same time-frame as previously found for Pionus and Pyrilia. Main conclusions The biogeographical history of Brotogeris implies a dynamic history for South American biomes since the Pliocene. It corroborates the idea that the geological evolution of Amazonia has been important in shaping its biodiversity, argues against the idea that the region has been environmentally stable during the Quaternary, and suggests dynamic interactions between wet and dry forest habitats in South America, with representatives of the Amazonian biota having several independent close relationships with taxa endemic to other biomes.