62 resultados para interleukin-13
Resumo:
IL-13 and eotaxin play important, inter-related roles in asthma models. In the lungs, CysLT, produced by the 5-LO-LTC4S pathway, mediate some local responses to IL-13 and eotaxin; in bone marrow, CysLT enhance IL-5-dependent eosinophil differentiation. We examined the effects of IL-13 and eotaxin on eosinophil differentiation. Semi-solid or liquid cultures were established from murine bone marrow with GM-CSF or IL-5, respectively, and the effects of IL-13, eotaxin, or CysLT on eosinophil colony formation and on eosinophil differentiation in liquid culture were evaluated, in the absence or presence of: a) the 5-LO inhibitor zileuton, the FLAP inhibitor MK886, or the CysLT1R antagonists, montelukast and MK571; b) mutations that inactivate 5-LO, LTC4S, or CysLT1R; and c) neutralizing mAb against eotaxin and its CCR3 receptor. Both cytokines enhanced GM-CSF-dependent eosinophil colony formation and IL-5-stimulated eosinophil differentiation. Although IL-13 did not induce eotaxin production, its effects were abolished by anti-eotaxin and anti-CCR3 antibodies, suggesting up-regulation by IL-13 of responses to endogenous eotaxin. Anti-CCR3 blocked eotaxin completely. The effects of both cytokines were prevented by zileuton, MK886, montelukast, and MK571, as well as by inactivation of the genes coding for 5-LO, LTC4S, and CysLT1R. In the absence of either cytokine, these treatments or mutations had no effect. These findings provide evidence for: a) a novel role of eotaxin and IL-13 in regulating eosinophilopoiesis; and b) a role for CysLTRs in bone marrow cells in transducing cytokine regulatory signals. J. Leukoc. Biol. 87: 885-893; 2010.
Resumo:
Background: We have previously explored a therapeutic strategy for specifically targeting the profibrotic activity of IL-13 during experimental pulmonary fibrosis using a fusion protein comprised of human IL-13 and a mutated form of Pseudomonas aeruginosa exotoxin A (IL13-PE) and observed that the intranasal delivery of IL13-PE reduced bleomycin-induced pulmonary fibrosis through its elimination of IL-13-responsive cells in the lung. The aim of the present study was to determine whether the presence of an immune response to P. aeruginosa and/or its exotoxin A (PE) would diminish the anti-fibrotic properties of IL13-PE. Methodology/Principal Findings: Fourteen days after P. aeruginosa infection, C57BL/6 mice were injected with bleomycin via the intratracheal route. Other groups of mice received 4 doses of saline or IL13-PE by either intranasal or intraperitoneal application, and were challenged i.t. with bleomycin 28 days later. At day 21 after bleomycin, all mice received either saline vehicle or IL13-PE by the intranasal route and histopatological analyses of whole lung samples were performed at day 28 after bleomycin. Intrapulmonary P. aeruginosa infection promoted a neutralizing IgG2A and IgA antibody response in BALF and serum. Surprisingly, histological analysis showed that a prior P. aeruginosa infection attenuated the development of bleomycin-induced pulmonary fibrosis, which was modestly further attenuated by the intranasal administration of IL13-PE. Although prior intranasal administration of IL13-PE failed to elicit an antibody response, the systemic administration of IL13-PE induced a strong neutralizing antibody response. However, the prior systemic sensitization of mice with IL13-PE did not inhibit the anti-fibrotic effect of IL13-PE in fibrotic mice. Conclusions: Thus, IL13-PE therapy in pulmonary fibrosis works regardless of the presence of a humoral immune response to Pseudomonas exotoxin A. Interestingly, a prior infection with P. aeruginosa markedly attenuated the pulmonary fibrotic response suggesting that the immune elicitation by this pathogen exerts anti-fibrotic effects.
Resumo:
Objective. To explore the relationship between biomarkers of pulmonary arterial hypertension (PAH), interferon (IFN)-regulated gene expression, and the alternative activation pathway in systemic sclerosis (SSc). Methods. Peripheral blood mononuclear cells (PBMCs) were purified from healthy controls, patients with idiopathic PAH, and SSc patients (classified as having diffuse cutaneous SSc, limited cutaneous SSc [lcSSc] without PAH, and lcSSc with PAH). IFN-regulated and ""PAH biomarker"" genes were compared after supervised hierarchical clustering. Messenger RNA levels of selected IFN-regulated genes (Siglec1 and MX1), biomarker genes (IL13RA1, CCR1, and JAK2), and the alternative activation marker gene (MRC1) were analyzed on PBMCs and on CD14- and CD14+ cell populations. Interleukin-13 (IL-13) and IL-4 concentrations were measured in plasma by immunoassay. CD14, MRC1, and IL13RA1 surface expression was analyzed by flow cytometry. Results. Increased PBMC expression of both IFN-regulated and biomarker genes distinguished SSc patients from healthy controls. Expression of genes in the biomarker cluster, but not in the IFN-regulated cluster, distinguished lcSSc with PAH from lcSSc without PAH. The genes CCR1 (P < 0.001) and JAK2 (P < 0.001) were expressed more highly in lcSSc patients with PAH compared with controls and mainly by CD14+ cells. MRC1 expression was increased exclusively in lcSSc patients with PAH (P < 0.001) and correlated strongly with pulmonary artery pressure (r = 0.52, P = 0.03) and higher mortality (P = 0.02). MRC1 expression was higher in CD14+ cells and was greatly increased by stimulation with IL-13. IL-13 concentrations in plasma were most highly increased in lcSSc patients with PAH (P < 0.001). Conclusion. IFN-regulated and biomarker genes represent distinct, although related, clusters in lcSSc patients with PAH. MRC1, a marker for the effect of IL-13 on alternative monocyte/macrophage activation, is associated with this severe complication and is related to mortality.
Resumo:
Helminths and their products have a profound immunomodulatory effect upon the inductive and effector phases of inflammatory responses, including allergy. We have demonstrated that PAS-1, a protein isolated from Ascaris strum worms, has an inhibitory effect on lung allergic inflammation due to its ability to down-regulate eosinophilic inflammation, Th2 cytokine release and IgE antibody production. Here, we investigated the role of IL-12, IFN-gamma and IL-10 in the PAS-1-induced inhibitory mechanism using a murine model of asthma. Wild type C57BL/6, IL-12(-/-), IFN-gamma(-/-) and IL-10(-/-) mice were immunized with PAS-1 and/or OVA and challenged with the same antigens intranasally. The suppressive effect of PAS-I was demonstrated on the cellular influx into airways, with reduction of eosinophil number and eosinophil peroxidase activity in OVA + PAS-1-immunized wild type mice. This effect well correlated with a significant reduction in the levels of IL-4, IL-5, IL-13 and eotaxin in BAL fluid. Levels of IgE and IgG1 antibodies were also impaired in serum from these mice. The inhibitory activity of PAS-I was also observed in IL-12(-/-) mice, but not in IFN-gamma(-/-) and IL-10(-/-) animals. These data show that IFN-gamma and IL-10, but not IL-12, play an important role in the PAS-1 modulatory effect. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to investigate the role of interleukin 12 (IL-12) during Strongyloides venezuelensis infection. IL-12(-/-) and wildtype C57BL/6 mice were subcutaneously infected with 1500 larvae of S. venezuelensis. On days 7, 14, and 21 post-infection, we determined eosinophil and mononuclear cell numbers in the blood and broncoalveolar lavage fluid (BALF), Th2 cytokine secretion in the lung parenchyma, and serum antibody levels. The numbers of eggs in the feces and worm parasites in the duodena were also quantified. The eosinophil and mononuclear cell counts and the concentrations of IL-3, IL-5, IL-10, IL-13, and IgG1 and IgE antibodies increased significantly in infected IL-12(-/-) and wild-type mice as compared with uninfected controls. However, the number of eosinophils and mononuclear cells in the blood and BALF and the Th2 cytokine levels in the lungs of infected IL-12-/- mice were greater than in infected wild-type C57BL/6 mice. In addition, serum IgE and IgG1 levels were also significantly enhanced in the infected mice lacking IL-12. Meanwhile, parasite burden and fecal egg counts were significantly decreased in infected IL-12-/- mice. Together, our results showed that the absence of IL-12 upregulates the Th2 immune response, which is important for control of S. venezuelensis infection. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
KM+ is a mannose-binding lectin from Artocarpus integrifolia that induces interleukin (IL)-12 production by macrophages and protective T helper I immune response against Leishmania major infection. in this study, we performed experiments to evaluate the therapeutic activity of jackfruit KM+ (jfKM(+)) and its recombinant counterpart (rKM(+)) in experimental paracoccidioidomycosis. To this end, jfKM(+) or rKM(+) was administered to BALB/c mice 10 days after infection with Paracoccidiodes brasiliensis. Thirty days postinfection, lungs from the KM+-treated mice contained significantly fewer colony-forming units and little to no organized granulomas compared to the controls. In addition, lung homogenates from the KM+-treated mice presented higher levels of nitric oxide, IL-12, interferon-gamma, and tumor necrosis factor-a, whereas higher levels of IL-4 and IL-10 were detected in the control group. With mice deficient in IL-12, Toll-like receptor (TLR) 2, TLR4, or TLR adaptor molecule MyD88, we demonstrated that KM+ led to protection against P. brasiliensis infection through IL-12 production, which was dependent on TLR2. These results demonstrated a beneficial effect of KM+ on the severity of P. brasiliensis infection and may expand its potential use as a novel immunotherapeutic molecule.
Resumo:
Background Metastatic renal cell carcinoma (mRCC) is one of the most treatment-resistant malignancies. Despite all new therapeutic advances, almost all patients develop resistance to treatment and cure is rarely seen. In the present study, we evaluated the antitumor effect of a bicistronic retrovirus vector encoding both endostatin (ES) and interleukin (IL)-2 using an orthotopic metastatic RCC mouse model. Methods Balb/C-bearing Renca cells were treated with NIH/3T3-LendIRES-IL-2-SN cells. In the survival studies, mice were monitored daily until they died. At the end of the in vivo experiment, serum levels of IL-2 and ES were measured, the lung was weighed, and the number of metastatic nodules, nodule area, tumor vessels and proliferation of tumor-infiltrating Renca cells were determined. Results Inoculation of NIH/3T3-LendIRES-IL-2-SN cells resulted in an increase in ES and IL-2 levels in the treated group (p < 0.05). There was a significant decrease in lung wet weight, lung nodule area and tumor vessels in the treated group compared to the control group (p < 0.001). The proliferation of Renca cells in the bicistronic-treated group was significantly reduced compared to the control group (p < 0.05). Kaplan-Meier survival curves showed that the probability of survival was significantly higher for mice submitted to bicistronic therapy (log-rank test, p = 0.0016). Bicistronic therapy caused an increase in the infiltration of CD4, CD4 interferon (IFN)gamma-producing, CD8, CD8 IFN gamma-producing and natural killer (CD49b) cells. Conclusions Retroviral bicistronic gene transfer led to the secretion of functional ES and IL-2 that was sufficiently active to: (i) inhibit tumor angiogenesis and tumor cell proliferation and (ii) increase the infiltration of immune cells (C) Copyright. 2011 John Wiley & Sons, Ltd.
Resumo:
Interleukin (IL)-1 alpha and beta are important modulators of many functions of corneal epithelial and stromal cells that occur following injury to the cornea, including the influx of bone marrow-derived inflammatory cells into the stroma attracted by chemokines released from the stroma and epithelium. In this study, we examined the effect of topical soluble IL-1 receptor antagonist on bone marrow-derived cell influx following corneal epithelial scrape injury in a mouse model. C57BL/6 mice underwent corneal epithelial scrape followed by application of IL-1 receptor antagonist (Amgen, Thousand Oaks, CA) at a concentration of 20 mg/ml or vehicle for 24 h prior to immunocytochemical detection of marker CD11b-positive cells into the stroma. In two experiments, topical IL-1 receptor antagonist had a marked effect in blocking cell influx. For example, in experiment 1, topical IL-1 receptor antagonist markedly reduced detectible CD11b-positive cells into the corneal stroma at 24 It after epithelial injury compared with the vehicle control (3.5 +/- 0.5 (standard error of the mean) cells/400x field and 13.9 +/- 1.2 cells/400x field, respectively, p < 0.01). A second experiment with a different observer performing cell counting had the same result. Thus, the data demonstrate conclusively that topical IL-1 receptor antagonist markedly down-regulates CD-11b-positive monocytic cell appearance in the corneal stroma. Topical IL-1 receptor antagonist could be an effective adjuvant for clinical treatment of corneal conditions in which unwanted inflammation has a role in the pathophysiology of the disorder. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to unravel the mechanisms by which interleukin (IL)-10, a potent pleiotropic cytokine, modulates alveolar bone homeostasis in C57BL/6 wild-type (WT) and IL-10 knockout (IL-10 KO) mice, evaluated at 8, 24, and 48 wk of age. Interleukin-10 KO mice presented significant alveolar bone loss when compared with WT mice, and this was not associated with changes in leukocyte counts or bacterial load. The levels of expression of messenger RNA (mRNA) for tumor necrosis factor-alpha (TNF-alpha), IL-1 beta, IL-6, transforming growth factor-beta (TGF-beta), receptor activator of nuclear factor kappa B ligand (RANKL), osteoprotegerin (OPG), and matrix metalloproteinase 13 (MMP13) were similar between both strains, whereas a significant decrease of tissue inhibitor of metalloproteinase 1 (TIMP1) mRNA expression was found at 48 wk in IL-10 KO mice. The osteoblast markers core binding factor alpha1 (CBFA1) and type I collagen (COL-I) were expressed at similar levels in both strains, whereas the levels of alkaline phosphatase (ALP) and osteocalcin (OCN), and those of the osteocyte markers phosphate-regulating gene endopeptidases (PHEX) and dentin matrix protein 1 (DMP1) were significantly lower in IL-10 KO mice. Our results demonstrate that the alveolar bone loss in the absence of IL-10 was associated with a reduced expression of osteoblast and osteocyte markers, an effect independent of microbial, inflammatory or bone-resorptive pathways.
Resumo:
The dentist can offer athletes improvement in their physical performance through the maintenance of oral health, preventing and treating any and all changes in the stomatognathic system, such as dental malocclusions, that compromise the athletes' performance. The objective of this study is to research the presence of dental malocclusions in athletes of the category between 13 and 20 years of age, from the São Paulo Football Club. 84 athletes participated in this study, dealing with the following topics: molar relation (Angle's classification); presence of overbite; underbite; overcrowding; abnormal spacing; open bite; and anterior, posterior, bilateral and unilateral crossbite; midline deviation and facial type (mesofacial, brachyfacial and dolichofacial). Only one table was made, showing percentages. In regard to Angle's molar relation, 89% are in Class I, 8% in Class II, 3% Class III, 9% of the athletes had overbite, 4% had underbite, 13% had overcrowding and 21% had abnormal spacing. In regard to the bite, 11% presented anterior open bite. In regard to crossbite, 7% presented unilateral crossbite on the right side and 2% on the left side; 5% presented posterior crossbite and 4% anterior crossbite. In regard to midline deviations, 4% presented deviation in the maxilla and 33% in the mandible. In regard to facial type: 39% are dolichofacial, 4% brachyfacial and 57% mesofacial. Based on the results shown, proposals for the implementation of dental, phoniatric, and Ear, Nose and Throat (ENT) practices are already being discussed with the multidisciplinary team of the club involved.
Resumo:
Pulp repair is a complex process whose mechanisms are not yet fully understood. The first immune cells to reach the damaged pulp are neutrophils that play an important role in releasing cytokines and in phagocytosis. The objective of this study was to analyze the effect of different pulp-capping materials on the secretion of interleukin-1 beta (IL-1β) and interleukin-8 (IL-8) by migrating human neutrophils. Neutrophils were obtained from the blood of three healthy donors. The experimental groups were calcium hydroxide [Ca(OH)2], an adhesive system (Single Bond), and mineral trioxide aggregate (MTA). Untreated cells were used as control. Transwell chambers were used in performing the assays to mimic an in vivo situation of neutrophil chemotaxis. The pulp-capping materials were placed in the lower chamber and the human neutrophils, in the upper chamber. The cells were counted and the culture medium was assayed using ELISA kits for detecting and quantifying IL-1β and IL8. The data were compared by ANOVA followed by Tukey's test (p < 0.05). The secretion of IL-8 was significantly higher in all groups in comparison to the control group (p < 0.05). The adhesive system group showed higher IL-8 than the MTA group (p < 0.05). The secretion of IL-1β was significantly greater only in the MTA group (p < 0.001). It was concluded that only MTA is able to improve the secretion of IL-1β, and all materials tested increased IL-8 secretion. These results combined with all the other biological advantages of MTA indicate that it could be considered the material of choice for dental pulp capping.
Resumo:
Interleukin-22 (IL-22) is a class 2 cytokine whose primary structure is similar to that of interleukin 10 (IL-10) and interferon-gamma (IFN-gamma). IL-22 induction during acute phase immune response indicates its involvement in mechanisms of inflammation. Structurally different from IL-10 and a number of other members of IL-10 family, which form intertwined inseparable V-shaped dimers of two identical polypeptide chains, a single polypeptide chain of IL-22 folds on itself in a relatively globular structure. Here we present evidence, based on native gel electrophoresis, glutaraldehyde cross-linking, dynamic light scattering, and small angle x-ray scattering experiments, that human IL-22 forms dimers and tetramers in solution under protein concentrations assessable by these experiments. Unexpectedly, low-resolution molecular shape of IL-22 dimers is strikingly similar to that of IL-10 and other intertwined cytokine dimeric forms. Furthermore, we determine an ab initio molecular shape of the IL-22/IL-22R1 complex which reveals the V-shaped IL-22 dimer interacting with two cognate IL-22R1 molecules. Based on this collective evidence, we argue that dimerization might be a common mechanism of all class 2 cytokines for the molecular recognition with their respective membrane receptor. We also speculate that the IL-22 tetramer formation could represent a way to store the cytokine in nonactive form at high concentrations that could be readily converted into functionally active monomers and dimers upon interaction with the cognate cellular receptors.
Resumo:
We report the synthesis and total NMR characterization of 5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid-3-[[[(4''-nitrophenoxy)carbonyl]oxy]-methyl]-8-oxo-7[(2-thienyloxoacetyl)amino]-diphenylmethyl ester-5-dioxide (5), a new cephalosporin derivative. This compound can be used as the carrier of a wide range of drugs containing an amino group. The preparation of the intermediate product, 5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid-3-[methyl-4-(6-methoxyquinolin-8-ylamino) pentylcarbamate]-8-oxo-7-[(2-thienyloxoacetyl)amino]-diphenylmethyl ester-5-dioxide (6), as well as the synthesis of the antimalarial primaquine prodrug 5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid-3-[methyl-4-(6-methoxyquinolin-8-ylamino) pentylcarbamate]-8-oxo-7-[(2-thienyloxoacetyl)amino]-5-dioxide (7) are also described, together with their total H-1- and C-13-NMR assignments.
Resumo:
Background: Human Papillomavirus, HPV, is the main etiological factor for cervical cancer. Different studies show that in women infected with HPV there is a positive correlation between lesion grade and number of infiltrating macrophages, as well as with IL-10 higher expression. Using a HPV16 associated tumor model in mice, TC-1, our laboratory has demonstrated that tumor infiltrating macrophages are M2-like, induce T cell regulatory phenotype and play an important role in tumor growth. M2 macrophages secrete several cytokines, among them IL-10, which has been shown to play a role in T cell suppression by tumor macrophages in other tumor models. In this work, we sought to establish if IL-10 is part of the mechanism by which HPV tumor associated macrophages induce T cell regulatory phenotype, inhibiting anti-tumor activity and facilitating tumor growth. Results: TC-1 tumor cells do not express or respond to IL-10, but recruit leukocytes which, within the tumor environment, produce this cytokine. Using IL-10 deficient mice or blocking IL-10 signaling with neutralizing antibodies, we observed a significant reduction in tumor growth, an increase in tumor infiltration by HPV16 E7 specific CD8 lymphocytes, including a population positive for Granzyme B and Perforin expression, and a decrease in the percentage of HPV specific regulatory T cells in the lymph nodes. Conclusions: Our data shows that in the HPV16 TC-1 tumor mouse model, IL-10 produced by tumor macrophages induce regulatory phenotype on T cells, an immune escape mechanism that facilitates tumor growth. Our results point to a possible mechanism behind the epidemiologic data that correlates higher IL-10 expression with risk of cervical cancer development in HPV infected women.
Resumo:
Context. The space telescope CoRoT searches for transiting extrasolar planets by continuously monitoring the optical flux of thousands of stars in several fields of view. Aims. We report the discovery of CoRoT-10b, a giant planet on a highly eccentric orbit (e = 0.53 +/- 0.04) revolving in 13.24 days around a faint (V = 15.22) metal-rich K1V star. Methods. We used CoRoT photometry, radial velocity observations taken with the HARPS spectrograph, and UVES spectra of the parent star to derive the orbital, stellar, and planetary parameters. Results. We derive a radius of the planet of 0.97 +/- 0.07 R(Jup) and a mass of 2.75 +/- 0.16 M(Jup). The bulk density,rho(p) = 3.70 +/- 0.83 g cm(-3), is similar to 2.8 that of Jupiter. The core of CoRoT-10b could contain up to 240 M(circle plus) of heavy elements. Moving along its eccentric orbit, the planet experiences a 10.6-fold variation in insolation. Owing to the long circularisation time, tau(circ) > 7 Gyr, a resonant perturber is not required to excite and maintain the high eccentricity of CoRoT-10b.