267 resultados para glyicne-rich protein
Resumo:
Background: Bovine anaplasmosis, caused by the rickettsial tick-borne pathogen Anaplasma marginale (Rickettsiales: Anaplasmataceae), is vectored by Rhipicephalus (Boophilus) microplus in many tropical and subtropical regions of the world. A. marginale undergoes a complex developmental cycle in ticks which results in infection of salivary glands from where the pathogen is transmitted to cattle. In previous studies, we reported modification of gene expression in Dermacentor variabilis and cultured Ixodes scapularis tick cells in response to infection with A. marginale. In these studies, we extended these findings by use of a functional genomics approach to identify genes differentially expressed in R. microplus male salivary glands in response to A. marginale infection. Additionally, a R. microplus-derived cell line, BME26, was used for the first time to also study tick cell gene expression in response to A. marginale infection. Results: Suppression subtractive hybridization libraries were constructed from infected and uninfected ticks and used to identify genes differentially expressed in male R. microplus salivary glands infected with A. marginale. A total of 279 ESTs were identified as candidate differentially expressed genes. Of these, five genes encoding for putative histamine-binding protein (22Hbp), von Willebrand factor (94Will), flagelliform silk protein (100Silk), Kunitz-like protease inhibitor precursor (108Kunz) and proline-rich protein BstNI subfamily 3 precursor (7BstNI3) were confirmed by real-time RT-PCR to be down-regulated in tick salivary glands infected with A. marginale. The impact of selected tick genes on A. marginale infections in tick salivary glands and BME26 cells was characterized by RNA interference. Silencing of the gene encoding for putative flagelliform silk protein (100Silk) resulted in reduced A. marginale infection in both tick salivary glands and cultured BME26 cells, while silencing of the gene encoding for subolesin (4D8) significantly reduced infection only in cultured BME26 cells. The knockdown of the gene encoding for putative metallothionein (93 Meth), significantly up-regulated in infected cultured BME26 cells, resulted in higher A. marginale infection levels in tick cells. Conclusions: Characterization of differential gene expression in salivary glands of R. microplus in response to A. marginale infection expands our understanding of the molecular mechanisms at the tick-pathogen interface. Functional studies suggested that differentially expressed genes encoding for subolesin, putative von Willebrand factor and flagelliform silk protein could play a role in A. marginale infection and multiplication in ticks. These tick genes found to be functionally relevant for tick-pathogen interactions will likely be candidates for development of vaccines designed for control of both ticks and tick-borne pathogens.
Resumo:
Background: The metastatic disease rather than the primary tumor itself is responsible for death in most solid tumors, including breast cancer. The role of matrix metalloproteinases ( MMPs), tissue inhibitors of MMPs (TIMPs) and Reversion-inducing cysteine-rich protein with Kazal motifs ( RECK) in the metastatic process has previously been established. However, in all published studies only a limited number of MMPs/MMP inhibitors was analyzed in a limited number of cell lines. Here, we propose a more comprehensive approach by analyzing the expression levels of several MMPs (MMP-2, MMP-9 and MMP-14) and MMP inhibitors (TIMP-1, TIMP-2 and RECK) in different models ( five human breast cancer cell lines, 72 primary breast tumors and 30 adjacent normal tissues). Methods: We analyzed the expression levels of MMP-2, MMP-9 and MMP-14 and their inhibitors (TIMP-1, TIMP-2 and RECK) by quantitative RT-PCR (qRT-PCR) in five human breast cancer cell lines presenting increased invasiveness and metastatic potential, 72 primary breast tumors and 30 adjacent normal tissues. Moreover, the role of cell-extracellular matrix elements interactions in the regulation of expression and activity of MMPs and their inhibitors was analyzed by culturing these cell lines on plastic or on artificial ECM (Matrigel). Results: The results demonstrated that MMPs mRNA expression levels displayed a positive and statistically significant correlation with the transcriptional expression levels of their inhibitors both in the cell line models and in the tumor tissue samples. Furthermore, the expression of all MMP inhibitors was modulated by cell-Matrigel contact only in highly invasive and metastatic cell lines. The enzyme/inhibitor balance at the transcriptional level significantly favors the enzyme which is more evident in tumor than in adjacent non-tumor tissue samples. Conclusion: Our results suggest that the expression of MMPs and their inhibitors, at least at the transcriptional level, might be regulated by common factors and signaling pathways. Therefore, the multi-factorial analysis of these molecules could provide new and independent prognostic information contributing to the determination of more adequate therapy strategies for each patient.`
Resumo:
RECK is an anti-tumoral gene whose activity has been associated with its inhibitory effects regulating MMP-2, MMP-9, and MT1-MMP. RECK level decreases as gliobastoma progresses, varying from less invasive grade II gliomas to very invasive human glioblastoma multiforme (GBM). Since RECK expression and glioma invasiveness show an inverse correlation, the aim of the present study is to investigate whether RECK expression would inhibit glioma invasive behavior. We conducted this study to explore forced RECK expression in the highly invasive T98G human GBM cell line. Expression levels as well as protein levels of RECK, MMP-2, MMP-9, and MT1-MMP were assessed by qPCR and immunoblotting in T98G/RECK+ cells. The invasion and migration capacity of RECK+ cells was inhibited in transwell and wound assays. Dramatic cytoskeleton modifications were observed in the T98G/RECK+ cells, when compared to control cells, such as the abundance of stress fibers (contractile actin-myosin II bundles) and alteration of lamellipodia. T98G/RECK+ cells also displayed phosphorylatecl focal adhesion kinase (P-FAK) in mature focal adhesions associated with stress fibers; whereas P-FAK in control cells was mostly associated with immature focal complexes. Interestingly, the RECK protein was predominantly localized at the leading edge of migrating cells, associated with membrane ruffles. Unexpectedly, introduced expression of RECK effectively inhibited the invasive process through rearrangement of actin filaments, promoting a decrease in migratory ability. This work has associated RECK tumor-suppressing activity with the inhibition of motility and invasion in this GBM model, which are two glioma characteristics responsible for the inefficiency of current available treatments. J. Cell. Biochem. 110: 52-61, 2010. (C) 2010 Wiley-Liss. Inc.
Resumo:
Aims Cysteine- and glycine-rich protein 3/muscle LIM-domain protein (CRP3/MLP) mediates protein-protein interaction with actin filaments in the heart and is involved in muscle differentiation and vascular remodelling. Here, we assessed the induction of CRP3/MLP expression during arterialization in human and rat veins. Methods and results Vascular CRP3/MLP expression was mainly observed in arterial samples from both human and rat. Using quantitative real time RT-PCR, we demonstrated that the CRP3/MLP expression was 10 times higher in smooth muscle cells (SMCs) from human mammary artery (h-MA) vs. saphenous vein (h-SV). In endothelial cells (ECs), CRP3/MLP was scarcely detected in either h-MA or h-SV. Using an ex vivo flow through system that mimics arterial condition, we observed induction of CRP3/MLP expression in arterialized h-SV. Interestingly, the upregulation of CRP3/MLP was primarily dependent on stretch stimulus in SMCs, rather than shear stress in ECs. Finally, using a rat vein in vivo arterialization model, early (1-14 days) CRP3/MLP immunostaining was observed predominantly in the inner layer and later (28-90 days) it appeared more scattered in the vessel layers. Conclusion Here we provide evidence that CRP3/MLP is primarily expressed in arterial SMCs and that stretch is the main stimulus for CRP3/MLP induction in veins exposed to arterial haemodynamic conditions.
Resumo:
Reversion-inducing-cysteine-rich protein with Kazal motifs (RECK) is a single membrane-anchored MMP-regulator and regulates matrix metalloproteinases (MMP) 2, 9 and 14. In turn, MMPs are endopeptidases that play a pivotal role in remodeling ECM. In this work, we decided to evaluate expression pattern of RECK in growing rat incisor during, specifically focusing out amelogenesis process. Based on different kinds of ameloblasts, our results showed that RECK expression was conducted by secretory and post-secretory ameloblasts. At the secretory phase, RECK was localized in the infra-nuclear region of the ameloblast, outer epithelium, near blood vessels, and in the stellate reticulum. From the transition to the maturation phases, RECK was strongly expressed by non-epithelial immuno-competent cells (macrophages and/or dendritic-like cells) in the papillary layer. From the transition to the maturation stage, RECK expression was increased. RECK mRNA was amplified by RT-PCR from whole enamel organ. Here, we verified the presence of RECK mRNA during all stages of amelogenesis. These events were governed by ameloblasts and by non-epithelial cells residents in the enamel organ. Concluding, we found differential expression of MMPs-2, -9 and RECK in the different phases of amelogenesis, suggesting that the tissue remodeling is rigorously controlled during dental mineralization.
Resumo:
P>A cDNA encoding a small lysine-rich protein of unknown function was identified in a tobacco (Nicotiana tabacum) stigma/style suppression subtractive hybridization cDNA library. After its characterization, the corresponding gene was designated stigma/style cell cycle inhibitor 1 (SCI1). Fluorescence microscopy with an SCI1-GFP protein fusion demonstrated its nuclear localization, which was confined to the interchromatic region. Real-time RT-PCR and in situ hybridization experiments showed that SCI1 is stigma/style-specific and developmentally regulated. SCI1 RNAi knockdown and overexpression plants had stigmas/styles with remarkably enlarged and reduced areas, respectively, which was attributable to differences in cell numbers. These results indicate that SCI1 is a tissue-specific negative cell cycle regulator. The differences in cell division had an effect on the timing of the differentiation of the stigmatic papillar cells, suggesting that their differentiation is coupled to stigma cell divisions. This is consistent with a role for SCI1 in triggering differentiation through cell proliferation control. Our results revealed that SCI1 is a novel tissue-specific gene that controls cell proliferation/differentiation, probably as a component of a developmental signal transduction pathway.
Resumo:
Snake venom metalloproteinases (SVMPs) have been extensively studied and their effects associated with the local bleeding observed in human accidents by viper snakes. Representatives of P-I and P-III classes of SVMPs similarly hydrolyze extracellular matrix proteins or coagulation factors while only P-III SVMPs induce significant hemorrhage in experimental models. In this work, the effects of P-I and P-III SVMPs on plasma proteins and cultures of muscle and endothelial cells were compared in order to enlighten the mechanisms involved in venom-induced hemorrhage. To reach this comparison, BnP1 was isolated from B. neuwiedi venom and used as a weakly hemorrhagic P-I SVMPs and jararhagin was used as a model of potently hemorrhagic P-III SVMP. BnP1 was isolated by size exclusion and anion-exchange chromatographies, showing apparent molecular mass of approximately 24kDa and sequence similarity with other members of SVMPs, which allowed its classification as a group P-I SVMP. The comparison of local effects induced by SVMPs showed that BnP1 was devoid of significant myotoxic and hemorrhagic activities and jararhagin presented only hemorrhagic activity. BnP1 and jararhagin were able to hydrolyze fibrinogen and fibrin, although the latter displayed higher activity in both systems. Using HUVEC primary cultures, we observed that BnP1 induced cell detachment and a decrease in the number of viable endothelial cells in levels comparable to those observed by treatment with jararhagin. Moreover, both BnP1 and jararhagin induced apoptosis in HUVECs while only a small increase in LDH supernatant levels was observed after treatment with jararhagin, suggesting that the major mechanism involved in endothelial cell death is apoptosis. Jararhagin and BnP1 induced little effects on C2C12 muscle cell cultures, characterized by a partial detachment 24h after treatment and a mild necrotic effect as evidenced by a small increase in the supernatants LDH levels. Taken together, our data show that P-I and P-III SVMPs presented comparable effects except for the hemorrhagic activity, suggesting that hydrolysis of coagulation factors or damage to endothelial cells are not sufficient for induction of local bleeding. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Insect oocytes grow in close association with the ovarian follicular epithelium (OFE), which escorts the oocyte during oogenesis and is responsible for synthesis and secretion of the eggshell. We describe a transcriptome of OFE of the triatomine bug Rhodnius prolixus, a vector of Chagas disease, to increase our knowledge of the role of FE in egg development. Random clones were sequenced from a cDNA library of different stages of follicle development. The transcriptome showed high commitment to transcription, protein synthesis, and secretion. The most abundant cDNA was a secreted (S) small, proline-rich protein with maximal expression in the vitellogenic follicle, suggesting a role in oocyte maturation. We also found Rp45, a chorion protein already described, and a putative chitin-associated cuticle protein that was an eggshell component candidate. Six transcripts coding for proteins related to the unfolded-protein response (UPR) by were chosen and their expression analyzed. Surprisingly, transcripts related to UPR showed higher expression during early stages of development and downregulation during late stages, when transcripts coding for S proteins participating in chorion formation were highly expressed. Several transcripts with potential roles in oogenesis and embryo development are also discussed. We propose that intense protein synthesis at the FE results in reticulum stress (RS) and that lowering expression of a set of genes related to cell survival should lead to degeneration of follicular cells at oocyte maturation. This paradoxical suppression of UPR suggests that ovarian follicles may represent an interesting model for studying control of RS and cell survival in professional S cell types. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Glycine-rich proteins (GRP), serve a variety of biological functions. Acanthoscurrin is an antimicrobial GRP isolated front hemocytes-of the Brazilian spider Acanthoscurria gomesiana. Aiming to contribute to the knowledge of the secondary structure and stepwise solid-phase synthesis of GRPs` glycine-rich domains, we attempted to prepare G(101)GGLGGGRGGGYG(113) GGGGYGGGYG(123)GGy(126)GGGKYK(132)-NH(2), acanthoscurrin C-terminal amidated fragment. Although a theoretical prediction did not indicate high aggregation potential for this peptide, repetitive incomplete aminoacylations were observed after incorporating Tyr(126) to the growing peptide-MBHA resin (Boc chemistry) at 60 degrees C. The problem was not solved by varying the coupling reagents or solvents, adding chaotropic salts to the reaction media or changing the resin/chemistry (Rink amide resin/Fmoc chemistry). Some improvement was mode when CLEAR amide resin (Fmoc chemistry) was 32 used, as it allowed for obtaining fragment (G(113)-K(132) NIR-FT-Raman spectra collected for samples of the growing peptide-MBHA, -Rink amide resin and -CLEAR amide resin revealed the presence of beta-sheet structures. Only the combination of CLEAR-amide resin, 60 degrees C, Fmoc-(Fmoc-Hmb)Gly-OH and LiCl (the last two used alternately) was able to inhibit the phenomenon, as proven by NIR-FT-Raman analysis of the growing peptide-resin, allowing the total synthesis of desired 132 fragment Gly(101)-K(132). In summary, this work describes a new difficult sequence, contributes to understanding stepwise solid-phase synthesis of this type of peptide and shows that, at least while protected and linked to a resin, this GRPs glycine-rich motif presents all early tendency to assume beta-sheet structures. (c) 2008 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 92: 65-75, 2009.
Resumo:
We have evaluated RECK (reversion-inducing-cysteine-rich protein with Kazal motifs), MMP-2 (matrix metalloproteinase-2), MMP-3, and MMP-9 involvement during palate development in mice by using various techniques. Immunohistochemical features revealed the distribution of RECK, MMP-2, and MMP-3 in the mesenchymal tissue and in the midline epithelial seam at embryonic day 13 (E13), MMPs-2, -3, and -9 being particularly expressed at E14 and E14.5. In contrast, RECK was weakly immunostained at these times. Involvement of MMPs was validated by measuring not only their protein expression, but also their activity (zymograms). In situ hybridization signal (ISH) for RECK transcript was distributed in mesenchymal and epithelial regions within palatal shelves at all periods evaluated. Importantly, the results from ISH analysis were in accord with those obtained by real-time polymerase chain reaction. The expression of RECK was found to be temporally regulated, which suggested possible roles in palatal ontogeny. Taken together, our results clearly show that remodeling of the extracellular matrix is finely modulated during secondary palate development and occurs in a sequential manner.
Resumo:
The objective of this study was to verify the protein turnover rates of healthy older persons under a usual protein-rich diet and to compare values to those described in the literature. This cross-sectional study was conducted at Metabolism Unit, Univ. Hospital of the School of Medicine of Ribeirao Preto, Univ. of Sao Paulo, Brazil. In this study, 7 healthy older persons aged 65.4 +/- 2.8 y, with BMI 22.7 +/- 2.4 kg/m(2) and a mean daily protein intake of 1.34 g of protein/kg were studied. A 9-h whole-body (15)N-glycine single-dose study was performed after an overnight fast. During the study, each subject received 6 isoenergetic, isonitrogenous meals at 2-h intervals based on their average intake. Ammonium, urea, and total nitrogen were quantified and analyzed by mass spectrometry, with the determination of total protein turnover rates by the (15)N-glycine method. The results show that total nitrogen output was 3.2 +/- 0.96 g/N and intake 7.7 +/- 1 g/N, (15)N nitrogen flux was 30.6 +/- 6.3 g/9 h. Endogenous nitrogen balance was positive (4.5g +/- g/N in 9 h). In conclusion, the protein turnover of healthy older persons under a usual protein-rich diet is positive during the fed state and has synthesis and degradation rates similar to those previously described in studies involving diet adaptation periods.
Resumo:
Background: We have previously demonstrated that four members of the family of small leucine-rich-proteoglycans (SLRPs) of the extracellular matrix (ECM), named decorin, biglycan, lumican and fibromodulin, are deeply remodeled in mouse uterine tissues along the estrous cycle and early pregnancy. It is known that the combined action of estrogen (E2) and progesterone (P4) orchestrates the estrous cycle and prepares the endometrium for pregnancy, modulating synthesis, deposition and degradation of various molecules. Indeed, we showed that versican, another proteoglycan of the ECM, is under hormonal control in the uterine tissues. Methods: E2 and/or medroxiprogesterone acetate (MPA) were used to demonstrate, by real time PCR and immunoperoxidase staining, respectively, their effects on mRNA expression and protein deposition of these SLRPs, in the uterine tissues. Results: Decorin and lumican were constitutively expressed and deposited in the ECM in the absence of the ovarian hormones, whereas deposition of biglycan and fibromodulin were abolished from the uterine ECM in the non-treated group. Interestingly, ovariectomy promoted an increase in decorin, lumican and fibromodulin mRNA levels, while biglycan mRNA conspicuously decreased. Hormone replacement with E2 and/or MPA differentially modulates their expression and deposition. Conclusions: The patterns of expression of these SLRPs in the uterine tissues were found to be hormone-dependent and uterine compartment-related. These results reinforce the existence of subpopulations of endometrial fibroblasts, localized into distinct functional uterine compartments, resembling the organization into basal and functional layers of the human endometrium.
Resumo:
Background: Plasmodium vivax malaria is a major public health challenge in Latin America, Asia and Oceania, with 130-435 million clinical cases per year worldwide. Invasion of host blood cells by P. vivax mainly depends on a type I membrane protein called Duffy binding protein (PvDBP). The erythrocyte-binding motif of PvDBP is a 170 amino-acid stretch located in its cysteine-rich region II (PvDBP(II)), which is the most variable segment of the protein. Methods: To test whether diversifying natural selection has shaped the nucleotide diversity of PvDBP(II) in Brazilian populations, this region was sequenced in 122 isolates from six different geographic areas. A Bayesian method was applied to test for the action of natural selection under a population genetic model that incorporates recombination. The analysis was integrated with a structural model of PvDBP(II), and T-and B-cell epitopes were localized on the 3-D structure. Results: The results suggest that: (i) recombination plays an important role in determining the haplotype structure of PvDBP(II), and (ii) PvDBP(II) appears to contain neutrally evolving codons as well as codons evolving under natural selection. Diversifying selection preferentially acts on sites identified as epitopes, particularly on amino acid residues 417, 419, and 424, which show strong linkage disequilibrium. Conclusions: This study shows that some polymorphisms of PvDBP(II) are present near the erythrocyte-binding domain and might serve to elude antibodies that inhibit cell invasion. Therefore, these polymorphisms should be taken into account when designing vaccines aimed at eliciting antibodies to inhibit erythrocyte invasion.
Resumo:
Baroreflex sensitivity is disturbed in many people with cardiovascular diseases such as hypertension. Brain deficiency of nitric oxide (NO), which is synthesized by NO synthase (NOS) in the citrulline-NO cycle (with argininosuccinate synthase (ASS) activity being the rate-limiting step), contributes to impaired baroreflex. We recently showed that a decapeptide isolated from Bothrops jararaca snake venom, denoted Bj-PRO-10c, exerts powerful and sustained antihypertensive activity. Bj-PRO-10c promoted vasodilatation dependent on the positive modulation of ASS activity and NO production in the endothelium, and also acted on the central nervous system, inducing the release of GABA and glutamate, two important neurotransmitters in the regulation of autonomic systems. We evaluated baroreflex function using the regression line obtained by the best-fit points of measured heart rate (HR) and mean arterial pressure (MAP) data from spontaneously hypertensive rats (SHRs) treated with Bj-PRO-10c. We also investigated molecular mechanisms involved in this effect, both in vitro and in vivo. Bj-PRO-10c mediated an increase in baroreflex sensitivity and a decrease in MAP and HR. The effects exerted by the peptide include an increase in the gene expression of endothelial NOS and ASS. Bj-PRO-10c-induced NO production depended on intracellular calcium fluxes and the activation of a G(i/o)-protein-coupled metabotropic receptor. Bj-PRO-10c induced NO production and the gene expression of ASS and endothelial NOS in the brains of SHRs, thereby improving baroreflex sensitivity. Bj-PRO-10c may reveal novel approaches for treating diseases with impaired baroreflex function. Hypertension Research (2010) 33, 1283-1288; doi: 10.1038/hr.2010.208
Resumo:
Plasmodium vivax Merozoite Surface Protein-3 alpha and 3 beta are members of a family of related merozoite surface proteins that contain a central alanine-rich domain with heptad repeats that is predicted to form alpha-helical secondary and coiled-coil tertiary structures. Seven recombinant proteins representing different regions of MSP-3 alpha and MSP-3 beta of P. vivax were generated to investigate their structure. Circular dichroism spectra analysis revealed that some proteins are folded with a high degree of alpha-helices as secondary structure, whereas other products contain a high content of random coil. Using size exclusion chromatography, we found that the two smaller fragments of the MSP-3 alpha, named CC4 and CC5, predicted to form coiled-coil (CC) structures, eluted at volumes corresponding to molecular weights larger than their monomeric masses. This result suggests that both proteins are oligomeric molecules. Analytical ultracentrifugation experiments showed that the CC5 oligomers are elongated molecules. Together, these data may help to understand important aspects of P. vivax biology. (C) 2008 Elsevier B.V. All rights reserved.