175 resultados para doped-Er3 glass microsphere
Resumo:
In this work, thermal and optical properties of the commercial Q-98 neodymium-doped phosphate glass have been measured at low temperature, from 50 to 300 K. The time-resolved thermal lens spectrometry together with the optical interferometry and the thermal relaxation calorimetry methods were used to investigate the glass athermal characteristics described by the temperature coefficient of the optical path length change, ds/dT. The thermal diffusivity was also determined, and the temperature coefficients of electronic polarizability, linear thermal expansion, and refractive index were calculated and used to explain ds/dT behavior. ds/dT measured via thermal lens method was found to be zero at 225 K. The results provided a complete characterization of the thermo-optical properties of the Q-98 glass, which may be useful for those using this material for diode-pumped solid-state lasers. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3234396]
Resumo:
The thermoluminescence (TL) response of Dy and Li doped 20CaB(4)O(7)-80CaB(2)O(4) (Wt%) glass-ceramic irradiated with ultraviolet (UV) radiation was studied. In order to act as TL activator ions, the Dy and Li ions were included in the matrix during the melting process to increase its TL efficiency. A single crystalline CaB2O4 phase was present in the glass-ceramic as determined by X-ray diffraction (XRD). The glass-ceramic 20CaB(4)O(7)-80CaB(2)O(4):Dy,Li wt% (named 20CBO7:Dy,Li) is a newly prepared TL material. Its thermoluminescent dosimetric characteristics have shown a linear response under UV radiation exposure and a good TL signal reproducibility, thus proving to be a promising material for using as an ultraviolet radiation dosimeter. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This work presents the optical properties of erbium-doped and erbium/ytterbium codoped Na(2)O-Al(2)O(3)-TiO(2)-Nb(2)O(5)-P(2)O(5) glass systems and also the characterization of planar waveguides obtained by typical thermally assisted Ag+<-> Na+ ion-exchange process. The glass systems allow the preparation of single mode and multimode planar waveguides presenting a strong and relatively broad emission at 1536 nm. The emission signal in the infrared region is intensified for silver-containing samples when compared with free-silver samples. The emission signal intensification may be attributed to a nonplasmonic energy transfer from silver species to Er3+ ions as no bands related to surface plasmon resonance (SPR) of silver nanoparticles were observed.
Resumo:
In this paper we present some result on sol-gel derived silica-hafnia systems. In particular we focus on fabrication, morphological and spectroscopic assessment of Er(3+)-activated thin films. Two examples of silica-hafnia-derived waveguiding glass ceramics, prepared by top-down and bottom-up techniques are reported, and the main optical properties are discussed. Finally, some properties of activated microspherical resonators, having a silica core, obtained by melting the end of a telecom fiber, coated with an Er(3+)-doped 70SiO(2)-30HfO(2) film, are presented. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Development of the positive temperature coefficient of resistivity (PTCR) in Er3+ and Ca2+ co-doped ferroelectric BaTiO3 was studied in this work, with Er3+ being used to act as a donor doping. Irrespective of all the materials showing high densities after sintering at 1200 to 1300 ºC, these revealed insulator at the lowest sintering temperature, changing to semiconducting and PTCR-type materials only when the sintering temperature was further increased. Observations from X-ray diffraction help correlating this effect with phase development in this formulated (Ba,Ca,Er)TiO3 system, considering the formation of initially two separated major (Ba,Ca)TiO3- and minor (Ca,Er)TiO3-based compounds, as a consequence of cation size-induced stress energy effects. Thus, appearance and enhancement here of the semiconducting and PTCR responses towards higher sintering temperatures particularly involve the incorporation of Er3+ into the major phase, rendering finally possible the generation and "percolative-like" migration of electrons throughout the whole material.
Resumo:
We report on energy transfer studies in terbium (Tb(3+))-europium (Eu(3+)) doped TeO(2)-ZnO-Na(2)O-PbO glass containing silver nanostructures. The samples excitation was made using ultraviolet radiation at 355 nm. Luminescence spectra were recorded from approximate to 480 to approximate to 700 nm. Enhanced Eu(3+) luminescence at approximate to 590 nm (transition (5)D(0)-(7)F(1)) and approximate to 614 nm (transition (5)D(0)-(7)F(2)) are observed. The large luminescence enhancement was obtained due to the simultaneous contribution of the Tb(3+)-Eu(3+) energy transfer and the contribution of the intensified local field on the Eu(3+) ions located near silver nanostructures.
Resumo:
In this work the time resolved thermal lens method is combined with interferometric technique, the thermal relaxation calorimetry, photoluminescence and lifetime measurements to determine the thermo physical properties of Nd(2)O(3) doped sodium zincborate glass as a function of temperature up to the glass transition region. Thermal diffusivity, thermal conductivity, fluorescence quantum efficiency, linear thermal expansion coefficient and thermal coefficient of electronic polarizability were determined. In conclusion, the results showed the ability of thermal lens and interferometric methods to perform measurements very close to the phase transition region. These techniques provide absolute values for the measured physical quantities and are advantageous when low scan rates are required. (c) 2008 Optical Society of America
Resumo:
The evidence of successful growth of Mn-doped PbS (Pb(1-x)Mn(x)S) nanocrystals (NCs) in SiO(2)-Na(2)CO(3)-Al(2)O(3)-PbO(2)-B(2)O(3) template, using the fusion method, is reported on in this study. The as-grown Pb(1-x)Mn(x)S NC is characterized using optical absorption, electron paramagnetic resonance, and atomic force microscopy. The data are discussed in terms of two distinct scenarios, namely a core-doped and a shell-doped nanostructure. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A Li(2)O-B(2)O(3)-Al(2)O(3) glass system, un-doped and doped with LiF, and/or TiO(2) was synthesized by the fusion method and its physical properties were investigated by thermoluminescence (TL), X-ray diffraction (XRD), electron paramagnetic resonance (EPR), atomic force microscopy (AFM) and differential thermal analysis (DTA). The samples were subjected to gamma-rays from a colbalt-60 ((60)Co) source. These techniques provided evidence of LiF and LiF doped with Ti crystal formation in the glass system. A TL glow peak at about 433 K was sensitive to (60)Co gamma-rays and showed good linearity with doses and consequently could be used to quantify radiation doses. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
Resumo:
The third-order optical susceptibility and dispersion of the linear refractive index of Er(3+)-doped lead phosphate glass were measured in the wavelength range between 400 and 1940 nm by using the spectrally resolved femtosecond Maker fringes technique. The nonlinear refractive index obtained from the third-order susceptibility was found to be five times higher than that of silica, indicating that Er(3+)-doped lead phosphate glass is a potential candidate to be used as the base component for the fabrication of photonic devices. For comparison purposes, the Z-scan technique was also employed to obtain the values of the nonlinear refractive index of Er(3+)-doped lead phosphate glass at several wavelengths, and the values obtained using the two techniques agree to within 15%.
Resumo:
To facilitate the design of laser host materials with optimized emission properties, detailed structural information at the atomic level is essential, regarding the local bonding environment of the active ions (distribution over distinct lattice sites) and their extent of local clustering as well as their population distribution over separate micro- or nanophases. The present study explores the potential of solid state NMR spectroscopy to provide such understanding for rare-earth doped lead lanthanum zirconate titanate (PLZT) ceramics. As the NMR signals of the paramagnetic dopant species cannot be observed directly, two complementary approaches are utilized: (1) direct observation of diamagnetic mimics using Sc-45 NMR and (2) study of the paramagnetic interaction of the constituent host lattice nuclei with the rare-earth dopant, using Pb-207 NMR lineshape analysis. Sc-45 MAS NMR spectra of scandium-doped PLZT samples unambiguously reveal scandium to be six-coordinated, suggesting that this rare-earth ion substitutes in the B site. Static Pb-207 spin echo NMR spectra of a series of Tm-doped PLZT samples reveal a clear influence of paramagnetic rare-earth dopant concentration on the NMR lineshape. In the latter case high-fidelity spectra can be obtained by spin echo mapping under systematic incrementation of the excitation frequency, benefiting from the signal-to-noise enhancement afforded by spin echo train Fourier transforms. Consistent with XRD data, the Pb-207 NMR lineshape analysis suggests that statistical incorporation into the PLZT lattice occurs at dopant levels of up to 1 wt.% Tm3+, while at higher levels the solubility limit is reached. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Nucleation of silver nanoparticles (NPs) in Tm(3+) doped PbO-GeO(2) (PGO) glass is reported. The influence of the heat treatment on the nucleation of silver NPs is studied by means of transmission electron microscopy and optical spectroscopy. Two heat treatment procedures were applied in order to compare their performance. Observation of infrared-to-visible frequency upconversion (UC) luminescence of Tm(3+) ions is reported and correlated with the heat-treatment procedure. Enhancement of the UC emission for samples heat treated during various time intervals is attributed to the increased local field in the vicinity of the NPs. Quenching of the UC signal was also observed and correlated with the growth of NPs amount and size.
Resumo:
Phosphoniobate glasses with composition (mol%) (100-x) NaPO(3)-xNb(2)O(5) ( x varying from 11 to 33) were prepared and characterized by means of thermal analysis, Fourier transform infrared spectroscopy, Raman scattering and (31)P nuclear magnetic resonance. The addition of Nb(2)O(5) to the polyphosphate base glass leads to depolymerization of the metaphosphate structure. Different colors were observed and assigned as indicating the presence of Nb(4+) ions, as confirmed by electron paramagnetic resonance measurements. The color was observed to depend on the glass composition and melting temperature as well. Er(3+) containing samples were also prepared. Strong emission in the 1550 nm region was observed. The Er(3+4)I(15/2) emission quantum efficiency was observed to be 90% and the quenching concentration was observed to be 1.1 mol%( 1.45 x 10(20) ions cm(-3)). Planar waveguides were prepared by Na(+)-K(+)-Ag(+) ion exchange with Er(3+) containing samples. Optical parameters of the waveguides were measured at 632.8, 543.5 and 1550 nm by the prism coupling technique as a function of the ion exchange time and Ag(+) concentration. The optimized planar waveguides show a diffusion depth of 5.9 mu m and one propagating mode at 1550 nm.
Resumo:
Luminescent Eu(3+) and Er(3+) doped SnO(2) powders have been prepared by Sn(4+) hydrolysis followed by a controlled growth reaction using a particle`s surface modifier in order to avoid particles aggregation. The powders so obtained doped with up to 2 mol% rare earth ions are fully redispersable in water at pH > 8 and present the cassiterite structure. Particles size range from 3 to 10 nm as determined by Photon Correlation Spectroscopy. Rare earth ions were found to be essentially incorporated into the cassiterite structure, substituting for Sn(4+), for doping concentration smaller than 0.05 mol%. For higher concentration they are also located at the particles surface. The presence of Eu(3+) ions at the surface of the particles hinder their growth and has therefore allowed the preparation of new materials consisting of water redispersable powders coated with Eu(3+)-beta dike-tonate complexes. Enhanced UV excited photoluminescence was observed in water. SnO(2) single layers with thickness up to 200 nm and multilayer coatings were spin coated on borosilicate glass substrates from the colloidal suspensions. Waveguiding properties were evaluated by the prism coupling technique. For a 0.3 mu m planar waveguide single propagating mode was observed with attenuation coefficient of 3.5 dB/cm at 632.8 nm.
Resumo:
This article reports a study on the preparation, densification process, and structural and optical properties of SiO(2)-Ta(2)O(5) nanocomposite films obtained by the sol-gel process. The films were doped with Er(3+) and the Si:Ta molar ratio was 90:10. Values of refractive index, thickness and vibrational modes in terms of the number of layers and thermal annealing time are described for the films. The densification process is accompanied by OH group elimination, increase in the refractive index, and changes in film thickness. Full densification of the film is acquired after 90 min of annealing at 900 degrees C. The onset of crystallization and devitrification, with the growth of Ta(2)O(5) nanocrystals occurs with film densification, evidenced by high-resolution transmission electron microscopy. The Er(3+)-doped nanocomposite annealed at 900 degrees C consists of Ta(2)O(5) nanoparticles, with sizes around 2 nm, dispersed in the SiO(2) amorphous phase. The main emission peak of the film is detected at around 1532 nm, which can be assigned to the (4)I(13/2)->(4)I(15/2) transition of the Er(3+) ions present in the nanocomposites. This band has a full width at half medium of 64 nm, and the lifetime measured for the (4)I(13/2) levels is 5.4 ms, which is broader compared to those of other silicate systems. In conclusion, the films obtained in this work are excellent candidates for use as active planar waveguide. (C) 2010 Elsevier B.V. All rights reserved.