156 resultados para Water vapor
Resumo:
The sensitivity of solar irradiance at the surface to the variability of aerosol intensive optical properties is investigated for a site (Alta Floresta) in the southern portion of the Amazon basin using detailed comparisons between measured and modeled irradiances. Apart from aerosol intensive optical properties, specifically single scattering albedo (omega(o lambda)) and asymmetry parameter (g(lambda)), which were assumed constant, all other relevant input to the model were prescribed based on observation. For clean conditions, the differences between observed and modeled irradiances were consistent with instrumental uncertainty. For polluted conditions, the agreement was significantly worse, with a root mean square difference three times larger (23.5 Wm(-2)). Analysis revealed a noteworthy correlation between the irradiance differences (observed minus modeled) and the column water vapor (CWV) for polluted conditions. Positive differences occurred mostly in wet conditions, while the differences became more negative as the atmosphere dried. To explore the hypothesis that the irradiance differences might be linked to the modulation of omega(o lambda) and g(lambda) by humidity, AERONET retrievals of aerosol properties and CWV over the same site were analyzed. The results highlight the potential role of humidity in modifying omega(o lambda) and g(lambda) and suggest that to explain the relationship seen between irradiances differences via aerosols properties the focus has to be on humidity-dependent processes that affect particles chemical composition. Undoubtedly, there is a need to better understand the role of humidity in modifying the properties of smoke aerosols in the southern portion of the Amazon basin.
Resumo:
We investigated the seasonal patterns of water vapor and sensible heat flux along a tropical biome gradient from forest to savanna. We analyzed data from a network of flux towers in Brazil that were operated within the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA). These tower sites included tropical humid and semideciduous forest, transitional forest, floodplain (with physiognomies of cerrado), and cerrado sensu stricto. The mean annual sensible heat flux at all sites ranged from 20 to 38 Wm(-2), and was generally reduced in the wet season and increased in the late dry season, coincident with seasonal variations of net radiation and soil moisture. The sites were easily divisible into two functional groups based on the seasonality of evaporation: tropical forest and savanna. At sites with an annual precipitation above 1900 mm and a dry season length less than 4 months (Manaus, Santarem and Rondonia), evaporation rates increased in the dry season, coincident with increased radiation. Evaporation rates were as high as 4.0 mm d(-1) in these evergreen or semidecidous forests. In contrast, ecosystems with precipitation less than 1700 mm and a longer dry season (Mato Grosso, Tocantins and Sao Paulo) showed clear evidence of reduced evaporation in the dry season. Evaporation rates were as low as 2.5 mm d(-1) in the transitional forests and 1 mm d(-1) in the cerrado. The controls on evapotranspiration seasonality changed along the biome gradient, with evaporative demand (especially net radiation) playing a more important role in the wetter forests, and soil moisture playing a more important role in the drier savannah sites.
Resumo:
This work describes the seasonal and diurnal variations of downward longwave atmospheric irradiance (LW) at the surface in Sao Paulo, Brazil, using 5-min-averaged values of LW, air temperature, relative humidity, and solar radiation observed continuously and simultaneously from 1997 to 2006 on a micrometeorological platform, located at the top of a 4-story building. An objective procedure, including 2-step filtering and dome emission effect correction, was used to evaluate the quality of the 9-yr-long LW dataset. The comparison between LW values observed and yielded by the Surface Radiation Budget project shows spatial and temporal agreement, indicating that monthly and annual average values of LW observed in one point of Sao Paulo can be used as representative of the entire metropolitan region of Sao Paulo. The maximum monthly averaged value of the LW is observed during summer (389 +/- 14 W m(-2): January), and the minimum is observed during winter (332 +/- 12 W m(-2); July). The effective emissivity follows the LW and shows a maximum in summer (0.907 +/- 0.032; January) and a minimum in winter (0.818 +/- 0.029; June). The mean cloud effect, identified objectively by comparing the monthly averaged values of the LW during clear-sky days and all-sky conditions, intensified the monthly average LW by about 32.0 +/- 3.5 W m(-2) and the atmospheric effective emissivity by about 0.088 +/- 0.024. In August, the driest month of the year in Sao Paulo, the diurnal evolution of the LW shows a minimum (325 +/- 11 W m(-2)) at 0900 LT and a maximum (345 12 W m-2) at 1800 LT, which lags behind (by 4 h) the maximum diurnal variation of the screen temperature. The diurnal evolution of effective emissivity shows a minimum (0.781 +/- 0.027) during daytime and a maximum (0.842 +/- 0.030) during nighttime. The diurnal evolution of all-sky condition and clear-sky day differences in the effective emissivity remain relatively constant (7% +/- 1%), indicating that clouds do not change the emissivity diurnal pattern. The relationship between effective emissivity and screen air temperature and between effective emissivity and water vapor is complex. During the night, when the planetary boundary layer is shallower, the effective emissivity can be estimated by screen parameters. During the day, the relationship between effective emissivity and screen parameters varies from place to place and depends on the planetary boundary layer process. Because the empirical expressions do not contain enough information about the diurnal variation of the vertical stratification of air temperature and moisture in Sao Paulo, they are likely to fail in reproducing the diurnal variation of the surface emissivity. The most accurate way to estimate the LW for clear-sky conditions in Sao Paulo is to use an expression derived from a purely empirical approach.
Resumo:
Atmospheric aerosol particles serving as cloud condensation nuclei (CCN) are key elements of the hydrological cycle and climate. We have measured and characterized CCN at water vapor supersaturations in the range of S=0.10-0.82% in pristine tropical rainforest air during the AMAZE-08 campaign in central Amazonia. The effective hygroscopicity parameters describing the influence of chemical composition on the CCN activity of aerosol particles varied in the range of kappa approximate to 0.1-0.4 (0.16+/-0.06 arithmetic mean and standard deviation). The overall median value of kappa approximate to 0.15 was by a factor of two lower than the values typically observed for continental aerosols in other regions of the world. Aitken mode particles were less hygroscopic than accumulation mode particles (kappa approximate to 0.1 at D approximate to 50 nm; kappa approximate to 0.2 at D approximate to 200 nm), which is in agreement with earlier hygroscopicity tandem differential mobility analyzer (H-TDMA) studies. The CCN measurement results are consistent with aerosol mass spectrometry (AMS) data, showing that the organic mass fraction (f(org)) was on average as high as similar to 90% in the Aitken mode (D <= 100 nm) and decreased with increasing particle diameter in the accumulation mode (similar to 80% at D approximate to 200 nm). The kappa values exhibited a negative linear correlation with f(org) (R(2)=0.81), and extrapolation yielded the following effective hygroscopicity parameters for organic and inorganic particle components: kappa(org)approximate to 0.1 which can be regarded as the effective hygroscopicity of biogenic secondary organic aerosol (SOA) and kappa(inorg)approximate to 0.6 which is characteristic for ammonium sulfate and related salts. Both the size dependence and the temporal variability of effective particle hygroscopicity could be parameterized as a function of AMS-based organic and inorganic mass fractions (kappa(p)=kappa(org) x f(org)+kappa(inorg) x f(inorg)). The CCN number concentrations predicted with kappa(p) were in fair agreement with the measurement results (similar to 20% average deviation). The median CCN number concentrations at S=0.1-0.82% ranged from N(CCN,0.10)approximate to 35 cm(-3) to N(CCN,0.82)approximate to 160 cm(-3), the median concentration of aerosol particles larger than 30 nm was N(CN,30)approximate to 200 cm(-3), and the corresponding integral CCN efficiencies were in the range of N(CCN,0.10/NCN,30)approximate to 0.1 to N(CCN,0.82/NCN,30)approximate to 0.8. Although the number concentrations and hygroscopicity parameters were much lower in pristine rainforest air, the integral CCN efficiencies observed were similar to those in highly polluted megacity air. Moreover, model calculations of N(CCN,S) assuming an approximate global average value of kappa approximate to 0.3 for continental aerosols led to systematic overpredictions, but the average deviations exceeded similar to 50% only at low water vapor supersaturation (0.1%) and low particle number concentrations (<= 100 cm(-3)). Model calculations assuming aconstant aerosol size distribution led to higher average deviations at all investigated levels of supersaturation: similar to 60% for the campaign average distribution and similar to 1600% for a generic remote continental size distribution. These findings confirm earlier studies suggesting that aerosol particle number and size are the major predictors for the variability of the CCN concentration in continental boundary layer air, followed by particle composition and hygroscopicity as relatively minor modulators. Depending on the required and applicable level of detail, the information and parameterizations presented in this paper should enable efficient description of the CCN properties of pristine tropical rainforest aerosols of Amazonia in detailed process models as well as in large-scale atmospheric and climate models.
Resumo:
Geosynthetics interlayer systems are effective techniques to control reflective cracking in damaged pavements. It comprises the inclusion of nonwoven geotextiles between the damaged layer and the new overlay of the pavement to reduce the propagation of cracks and to extend pavement life. However, the success of this technique depends directly on the understanding of the geotextile`s behavior when impregnated with asphalt This paper evaluates different nonwoven geotextiles frequently used in anti-reflective cracking systems, focusing on initial stiffness gain and permeability reduction after asphalt impregnation. Fresh and impregnated samples of polyester and polypropylene nonwoven geotextiles were tested. Cationic rapid setting emulsified asphalt was used as asphalt binder. Wide-width tensile tests were carried out based on the specification of ABNT - NBR 12824 (1993). Water vapor transmission tests were conducted according to ASTM E 96M (2005). Results of tensile tests on impregnated geotextiles showed a significant increase on tensile strength values, probably due to the inter contact of the fibers. Results also showed high increase in strength values at strain levels less than 0.05% and decrease on stiffness gains with increase of strains. Water vapor transmission tests demonstrated that cationic asphalt emulsion applied on nonwoven geotextiles allows a drastic reduction in permeability values to turn nonwoven geotextiles into a low permeability barrier. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The beta-carbolines 1-methyl-9H-pyrido [3,4-b]indole and 9H-pyrido[3,4b]indole have been implicated as having causative roles in a number of human diseases, such as Parkinson`s disease and cancer. As they can be formed during the heating of protein-rich food, a number of analytical methodologies have been proposed for their detection and quantification in foodstuff For this purpose, LC-MS and LC-MS/MS have emerged as the most specific analytical methods, and the quantification is based on the occurrence of unusual ions, such as [M+H-(H(center dot))](+) and [M + H-2H](+). In this study, we have investigated the formation of these ions by accurate-mass electrospray MS/MS and demonstrated that these ions are formed from gas-phase ion-molecule reactions between water vapor present in the collision cell and the protonated molecule of 1-methyl-9H-pyrido [3,4-b]indole and 9H-pyrido[3,4b]indole. Although this reaction has been previously described for heterocyclic amine ions, it has been overlooked in the most of recent LC-MS and LC-MS/MS studies, and no complete data of the fragmentation are reported. Our results demonstrate that additional attention should be given with respect to eliminating water vapor residues in the mass spectrometer when analysis of beta-carbolines is performed, as this residue may affect the reliability in the results of quantification.
Resumo:
The use of biodegradable natural polymers has increased due to the over-solid packaging waste. In this study, a chemical modification of the casein molecule was performed by Maillard reaction, and the modified polymer was evaluated by polyacrylamide gel electrophoresis (PAGE), thermogravimetry/derivative thermogravimetry (TG/DTG), FT-IR, and (1)H-NMR spectroscopy. Subsequently, films based on the modified casein were obtained and characterized by mechanical analysis, water vapor transmission, and erosion behavior. The PAGE results suggested an increase of molecular mass of the modified polymer, and FT-IR spectroscopy data indicated inclusion of C-OH groups into this molecule. The TG/DTG curves of modified casein presented a different thermal decomposition profile compared to the individual compounds. Mechanical tests showed that the chemical modification of the casein molecules provided higher elongation rates (45.5%) to the films, suggesting higher plasticity, than the original molecules (13.4%). The modified casein films presented higher permeability (0.505 +/- A 0.006 mu g/h mm(3)) than the original polymer (0.387 +/- A 0.006 mu g/h mm(3)) films at 90% relative humidity (RH). In pH 1.2, modified casein films presented higher erosion rates (32.690 +/- A 0.692%) than casein films (19.910 +/- A 2.083%) after 8 h, suggesting an increased sensibility for erosion of the modified casein films in acid environment. In water (pH 7.0), the films erosion profiles were similar. Those findings indicate that the modification of molecule by Maillard reaction provided films more plastic, hydrophilic, and sensitive to erosion in acid environment, suggesting that a new polymer with changed properties was founded.
Resumo:
The aim of this research was to evaluate the plasticizing effect of natural surfactants lecithin or yucca extract from Yucca schidigera on gelatin-based films Films containing yucca extract showed higher tensile strength values (similar to 90-40 MPa) and moisture contents (similar to 15%) and less elongation (similar to 5%) and water vapor permeability values (similar to 0 22-009 g mm m(-2) h(-1) kPa(-1)) compared to films containing lecithin Soluble films (similar to 20-50%) were obtained when yucca extract was used while lecithin produced low soluble films (<10%) The opacity of the films (similar to 14 5-16 2%) was similar for both surfactants and the film surface morphologies were continuous and homogeneous X-ray diffraction indicated that the addition of surfactants produced amorphous films compared to gelatin-based films and FT-Infrared spectroscopy showed no evidence of association between the surfactants and the gelatin The plasticizing effect was not obtained after surfactants addition and casting technique (C) 2010 Elsevier Ltd All rights reserved
Resumo:
Biodegradable films based on cassava starch and with addition of natural antimicrobial ingredients were prepared using the casting technique. The tensile properties tensile strength (TS) [MPa] and percent elongation (E) at break [%] and the water vapor transmission (WVT) of the biodegradable films were evaluated and compared with the control (without antimicrobial ingredients). The evaluation of the Colony Forming Units per gram [CFU/g] of pan bread slices packed with the best biodegradable films, in terms of packaging performance, was also determined. The addition onto the matrix of only clove and cinnamon powders could reduce the films WVT when compared to the control, however TS and E were lower than the control and the effect of cinnamon was milder regarding this property. Since water activity of the pan bread slices packed with the biodegradable films increased considerably during the storage period, the antimicrobial effect could not be clearly determined. (C) 2010 Published by Elsevier Ltd.
Resumo:
The aim of this study was to evaluate the incorporation of hydrophobic plasticizers (acetyltributyl citrate - ATB, tributyl citrate - TB and acetyltriethyl citrate - ATC) in a matrix of gelatin, using the saponin extracted from Yucca schidigera (yucca) as emulsifier, in the production of biodegradable emulsified films using the casting technique. High levels of hydrophobic plasticizers were incorporated, reaching up to 75% of plasticizer in relation to the protein (w/w) for ATB and TB, and up to 60% for ATC. The minimum values of water vapor permeability were 0.08, 0.07 and 0.06 g mm m(-2) h(-1) kPa(-1) for ATB, TB and ATC respectively, with no significant differences (p > 0.05). The water solubility of the films ranged from 21% to 59.5%. Although the WVP decreased, both scanning electron microscopy and laser scanning confocal microscopy indicated that the incorporation of the hydrophobic plasticizers did not occur homogeneously in the film matrix. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The optimal formulation for the preparation of amaranth flour films plasticized with glycerol and sorbitol was obtained by a multi-response analysis. The optimization aimed to achieve films with higher resistance to break, moderate elongation and lower solubility in water. The influence of plasticizer concentration (Cg, glycerol or Cs, sorbitol) and process temperature (Tp) on the mechanical properties and solubility of the amaranth flour films was initially studied by response surface methodology (RSM). The optimized conditions obtained were Cg 20.02 g glycerol/100 g flour and Tp 75 degrees C, and Cs 29.6 g sorbitol/100 g flour and Tp 75 degrees C. Characterization of the films prepared with these formulations revealed that the optimization methodology employed in this work was satisfactory. Sorbitol was the most suitable plasticizer. It furnished amaranth flour films that were more resistant to break and less permeable to oxygen, due to its greater miscibility with the biopolymers present in the flour and its lower affinity for water. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was the production and characterization of gelatin-based films using hydrophobic plasticizers derived from citric acid and soy lecithin as emulsifier. The films were characterized as to their mechanic properties, permeability to water vapor, opacity, morphology and possible interactions using Fourier transform infrared spectroscopy. Tensile strength values (TS) varied from 36 to 103 MPa, how-ever, the increase in the concentration of plasticizers (acetyltributyl citrate and tributyl citrate) reduced TS by 57% and no relation was observed between plasticizer quantities and the elongation in the quantities tested. Permeability to water vapor varied between 0.17 and 0.34 (g mm/m(2) h kPa), slightly increasing with the increase in concentration of plasticizers. The effectiveness in the use of soy lecithin emulsifier in the homogenization between the compounds could be proven by microscopic observation using confocal laser microscopy. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work was to study the effect of the hydrolysis degree (HD) and the concentration (C(PVA)) Of two types of poly(vinyl alcohol) (PVA) and of the type (glycerol and sorbitol) and the concentration (C(P)) of plasticizers on some physical properties of biodegradable films based on blends of gelatin and PVA Using a response-surface methodology. The films were prepared with a film forming solutions (FFS) with 2 g of macromolecules (gelatin+PVA)/100 g de FFS. The responses analyzed were the mechanical properties, the solubility, the moisture Content. the color difference and the opacity. The linear model was statistically significant and predictive for puncture force and deformation. elongation at break, solubility in water, Moisture content and opacity. The CPVA affected strongly the elongation at break of the films. The interaction of the HD and the C(P) affected this property. Moreover. the puncture force was affected slightly by the C(PVA). Concerning the Solubility in water, the reduction of the HD increased it and this effect was greater for high CPVA Values. In general. the most important effect observed in the physical properties of the films was that of the plasticizer type and concentration. The PVA hydrolysis degree and concentration have an important effect only for the elongation at break, puncture deformation and solubility in water. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The gelatin prepared from the skins of the Atlantic halibut (Hippoglossus hippoglossus) was investigated for the development of edible films plasticized with 30g sorbitol/100g gelatin. Two types of dry gelatin preparations were obtained depending on whether an intermediate evaporation step at 60 degrees C in the drying procedure is included or not. The amino acid composition, molecular weight distribution (determined by SDS-polyacrylamide gel electrophoresis) and glass transition temperature (determined by differential scanning calorimetry) of the gelatins were determined and related to some physical properties of the resulting films. The gelatin extracted from the halibut skins showed a suitable filmogenic capacity, leading to transparent, weakly colored, water-soluble and highly extensible films. The intermediate evaporation step at 60 degrees C induced thermal protein degradation, causing the resulting films to be significantly less resistant and more extensible. No differences in water vapor permeability, viscoelasticity, glass transition or color properties were evidenced between the two gelatins tested. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to evaluate the effects of the addition of surfactants sodium stearoyl lactate (SSL) and sucrose ester (SE) on the functional properties of films produced with polysaccharides mixtures (methylcellulose/glucomannan/pectin in 1/4/1 ratio, respectively) and gelatin. The films were produced by the casting method and characterized for their water vapor permeability (WVP), mechanical (tensile strength and elongation to break point), morphological and optical properties. Films with low WVP were obtained with surfactants. Addition of SE to the films with polysaccharide/gelatin ratio of 90/10 showed improved mechanical properties. Films presented smooth surfaces with micro voids and lumpiness, depending on the surfactant tested. Surfactants increased the opacity of the films by a factor of 1-3%. All film properties were dependent on the surfactant affinity for the biopolymer matrix. SE presented more affinity for biopolymer matrix containing high polysaccharide proportion, and SSL presented more affinity for polymer matrix containing high gelatin proportion. The addition of surfactants decreased the water vapor permeability of the films, increasing their hydrophobic character.