23 resultados para Snell problem
Resumo:
In this paper we study when the minimal number of roots of the so-called convenient maps horn two-dimensional CW complexes into closed surfaces is zero We present several necessary and sufficient conditions for such a map to be root free Among these conditions we have the existence of specific fittings for the homomorphism induced by the map on the fundamental groups, existence of the so-called mutation of a specific homomorphism also induced by the map, and existence of particular solutions of specific systems of equations on free groups over specific subgroups
Continuity of the dynamics in a localized large diffusion problem with nonlinear boundary conditions
Resumo:
This paper is concerned with singular perturbations in parabolic problems subjected to nonlinear Neumann boundary conditions. We consider the case for which the diffusion coefficient blows up in a subregion Omega(0) which is interior to the physical domain Omega subset of R(n). We prove, under natural assumptions, that the associated attractors behave continuously as the diffusion coefficient blows up locally uniformly in Omega(0) and converges uniformly to a continuous and positive function in Omega(1) = (Omega) over bar\Omega(0). (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In this work we continue the analysis of the asymptotic dynamics of reaction-diffusion problems in a dumbbell domain started in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2) (2006) 551-597]. Here we study the limiting problem, that is, an evolution problem in a ""domain"" which consists of an open, bounded and smooth set Omega subset of R(N) with a curve R(0) attached to it. The evolution in both parts of the domain is governed by a parabolic equation. In Omega the evolution is independent of the evolution in R(0) whereas in R(0) the evolution depends on the evolution in Omega through the continuity condition of the solution at the junction points. We analyze in detail the linear elliptic and parabolic problem, the generation of linear and nonlinear semigroups, the existence and structure of attractors. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
A new approach for solving the optimal power flow (OPF) problem is established by combining the reduced gradient method and the augmented Lagrangian method with barriers and exploring specific characteristics of the relations between the variables of the OPF problem. Computer simulations on IEEE 14-bus and IEEE 30-bus test systems illustrate the method. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The constrained compartmentalized knapsack problem can be seen as an extension of the constrained knapsack problem. However, the items are grouped into different classes so that the overall knapsack has to be divided into compartments, and each compartment is loaded with items from the same class. Moreover, building a compartment incurs a fixed cost and a fixed loss of the capacity in the original knapsack, and the compartments are lower and upper bounded. The objective is to maximize the total value of the items loaded in the overall knapsack minus the cost of the compartments. This problem has been formulated as an integer non-linear program, and in this paper, we reformulate the non-linear model as an integer linear master problem with a large number of variables. Some heuristics based on the solution of the restricted master problem are investigated. A new and more compact integer linear model is also presented, which can be solved by a branch-and-bound commercial solver that found most of the optimal solutions for the constrained compartmentalized knapsack problem. On the other hand, heuristics provide good solutions with low computational effort. (C) 2011 Elsevier BM. All rights reserved.
Resumo:
This paper addresses the one-dimensional cutting stock problem when demand is a random variable. The problem is formulated as a two-stage stochastic nonlinear program with recourse. The first stage decision variables are the number of objects to be cut according to a cutting pattern. The second stage decision variables are the number of holding or backordering items due to the decisions made in the first stage. The problem`s objective is to minimize the total expected cost incurred in both stages, due to waste and holding or backordering penalties. A Simplex-based method with column generation is proposed for solving a linear relaxation of the resulting optimization problem. The proposed method is evaluated by using two well-known measures of uncertainty effects in stochastic programming: the value of stochastic solution-VSS-and the expected value of perfect information-EVPI. The optimal two-stage solution is shown to be more effective than the alternative wait-and-see and expected value approaches, even under small variations in the parameters of the problem.
Resumo:
We consider an agricultural production problem, in which one must meet a known demand of crops while respecting ecologically-based production constraints. The problem is twofold: in order to meet the demand, one must determine the division of the available heterogeneous arable areas in plots and, for each plot, obtain an appropriate crop rotation schedule. Rotation plans must respect ecologically-based constraints such as the interdiction of certain crop successions, and the regular insertion of fallows and green manures. We propose a linear formulation for this problem, in which each variable is associated with a crop rotation schedule. The model may include a large number of variables and it is, therefore, solved by means of a column-generation approach. We also discuss some extensions to the model, in order to incorporate additional characteristics found in field conditions. A set of computational tests using instances based on real-world data confirms the efficacy of the proposed methodology. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper addresses the independent multi-plant, multi-period, and multi-item capacitated lot sizing problem where transfers between the plants are allowed. This is an NP-hard combinatorial optimization problem and few solution methods have been proposed to solve it. We develop a GRASP (Greedy Randomized Adaptive Search Procedure) heuristic as well as a path-relinking intensification procedure to find cost-effective solutions for this problem. In addition, the proposed heuristics is used to solve some instances of the capacitated lot sizing problem with parallel machines. The results of the computational tests show that the proposed heuristics outperform other heuristics previously described in the literature. The results are confirmed by statistical tests. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Foundries can be found all over Brazil and they are very important to its economy. In 2008, a mixed integer-programming model for small market-driven foundries was published, attempting to minimize delivery delays. We undertook a study of that model. Here, we present a new approach based on the decomposition of the problem into two sub-problems: production planning of alloys and production planning of items. Both sub-problems are solved using a Lagrangian heuristic based on transferences. An important aspect of the proposed heuristic is its ability to take into account a secondary practice objective solution: the furnace waste. Computational tests show that the approach proposed here is able to generate good quality solutions that outperform prior results. Journal of the Operational Research Society (2010) 61, 108-114. doi:10.1057/jors.2008.151
Resumo:
This paper deals with the classical one-dimensional integer cutting stock problem, which consists of cutting a set of available stock lengths in order to produce smaller ordered items. This process is carried out in order to optimize a given objective function (e.g., minimizing waste). Our study deals with a case in which there are several stock lengths available in limited quantities. Moreover, we have focused on problems of low demand. Some heuristic methods are proposed in order to obtain an integer solution and compared with others. The heuristic methods are empirically analyzed by solving a set of randomly generated instances and a set of instances from the literature. Concerning the latter. most of the optimal solutions of these instances are known, therefore it was possible to compare the solutions. The proposed methods presented very small objective function value gaps. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Industrial production processes involving both lot-sizing and cutting stock problems are common in many industrial settings. However, they are usually treated in a separate way, which could lead to costly production plans. In this paper, a coupled mathematical model is formulated and a heuristic method based on Lagrangian relaxation is proposed. Computational results prove its effectiveness. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This article describes and compares three heuristics for a variant of the Steiner tree problem with revenues, which includes budget and hop constraints. First, a greedy method which obtains good approximations in short computational times is proposed. This initial solution is then improved by means of a destroy-and-repair method or a tabu search algorithm. Computational results compare the three methods in terms of accuracy and speed. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
An important production programming problem arises in paper industries coupling multiple machine scheduling with cutting stocks. Concerning machine scheduling: how can the production of the quantity of large rolls of paper of different types be determined. These rolls are cut to meet demand of items. Scheduling that minimizes setups and production costs may produce rolls which may increase waste in the cutting process. On the other hand, the best number of rolls in the point of view of minimizing waste may lead to high setup costs. In this paper, coupled modeling and heuristic methods are proposed. Computational experiments are presented.
Resumo:
In this paper, we present a mathematically rigorous quantum-mechanical treatment of a one-dimensional motion of a particle in the Calogero potential alpha x(-2). Although the problem is quite old and well studied, we believe that our consideration based on a uniform approach to constructing a correct quantum-mechanical description for systems with singular potentials and/or boundaries, proposed in our previous works, adds some new points to its solution. To demonstrate that a consideration of the Calogero problem requires mathematical accuracy, we discuss some `paradoxes` inherent in the `naive` quantum-mechanical treatment. Using a self-adjoint extension method, we construct and study all possible self-adjoint operators (self-adjoint Hamiltonians) associated with a formal differential expression for the Calogero Hamiltonian. In particular, we discuss a spontaneous scale-symmetry breaking associated with self-adjoint extensions. A complete spectral analysis of all self-adjoint Hamiltonians is presented.
Resumo:
We present a mathematically rigorous quantum-mechanical treatment of a one-dimensional non-relativistic motion of a particle in the potential field V(x) = g(1)x(-1) + g(2)x(-2), x is an element of R(+) = [0, infinity). For g(2) > 0 and g(1) < 0, the potential is known as the Kratzer potential V(K)(x) and is usually used to describe molecular energy and structure, interactions between different molecules and interactions between non-bonded atoms. We construct all self-adjoint Schrodinger operators with the potential V(x) and represent rigorous solutions of the corresponding spectral problems. Solving the first part of the problem, we use a method of specifying self-adjoint extensions by (asymptotic) self-adjoint boundary conditions. Solving spectral problems, we follow Krein`s method of guiding functionals. This work is a continuation of our previous works devoted to the Coulomb, Calogero and Aharonov-Bohm potentials.