32 resultados para Sensors and actuators


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A reliable and fast sensor for in vitro evaluation of solar protection factors (SPFs) of cosmetic products, based on the photobleaching kinetics of a nanocrystalline TiO(2)/dye UV-dosimeter, has been devised. The accuracy, robustness and suitability of the new device was demonstrated by the excellent matching of the predicted and the in vivo results up to SPF 70, for four standard samples analyzed in blind. These results strongly suggest that our device can be useful for routine SPF evaluation in laboratories devoted to the development or production of cosmetic formulations, since the conventional in vitro methods tend to exhibit unacceptably high errors above SPF similar to 30 and the conventional in vivo methods tend to be expensive and exceedingly time consuming. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new approach to fabricate a disposable electronic tongue is reported. The fabrication of the disposable sensor aimed the integration of all electrodes necessary for measurement in the same device. The disposable device was constructed with gold CD-R and copper sheets substrates and the sensing elements were gold, copper and a gold surface modified with a layer of Prussian Blue. The relative standard deviation for signals obtained from 20 different disposable gold and 10 different disposable copper electrodes was below 3.5%. The performance, electrode materials and the capability of the device to differentiate samples were evaluated for taste substances model, milk with different pasteurization processes (homogenized/pasteurized, ultra high temperature (UHT) pasteurized and UHT pasteurized with low fat content) and adulterated with hydrogen peroxide. In all analysed cases, a good separation between different samples was noticed in the score plots obtained from the principal component analysis (PCA). Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dynamic atmosphere generator with a naphthalene emission source has been constructed and used for the development and evaluation of a bioluminescence sensor based on the bacteria Pseudomonas fluorescens HK44 immobilized in 2% agar gel (101 cell mL(-1)) placed in sampling tubes. A steady naphthalene emission rate (around 7.3 nmol min(-1) at 27 degrees C and 7.4 mLmin(-1) of purified air) was obtained by covering the diffusion unit containing solid naphthalene with a PTFE filter membrane. The time elapsed from gelation of the agar matrix to analyte exposure (""maturation time"") was found relevant for the bioluminescence assays, being most favorable between 1.5 and 3 h. The maximum light emission, observed after 80 min, is dependent on the analyte concentration and the exposure time (evaluated between 5 and 20 min), but not on the flow rate of naphthalene in the sampling tube, over the range of 1.8-7.4 nmol min(-1). A good linear response was obtained between 50 and 260 nmol L-1 with a limit of detection estimated in 20 nmol L-1 far below the recommended threshold limit value for naphthalene in air. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Micronozzles with piezoelectric actuator were fabricated and investigated. The micronozzles were fabricated in glass substrates using a powder-blasting technique, and the actuator is a bimorph structure made from a piezoelectric polymer. The actuator was located at the nozzle outlet, and was driven in an oscillating mode by applying an alternating voltage across the actuator electrodes. With a pressure difference between inlet and outlet, the gas flow rate through the device was increased. This effect was quantified, and compared to a similar micronozzle with no actuator. The increase in the flow rate was defined as the gas flow through the micronozzle with actuator oscillating minus the gas flow without actuator, was found to depend on the inlet pressure, the pressure ratio, and the nozzle throat diameter. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catalytic properties of copper thin films deposited in small channels and cavities were tested using Raman microscopy and mass spectroscopy (MS) techniques, mainly. The catalytic surface conditions were addressed visually and chemically by optical microscopy and X-ray photoelectron spectroscopy (XPS), respectively. The experimental conditions of present work induced copper oxidation; eventually a number of carbon species and graphite remained on the catalytic surface. Quartz crystal microbalance and mass spectroscopy data support both adsorption and catalysis phenomena. MS showed CO2 formation during n-hexane heating process but not to 2-propanol, probably due to redox reactions. XPS of copper surface present in the cavity after catalysis tests detected Cu2O and a range of possible carbon species. The adsorption and catalytic performance of copper films deposited in cavities and microchannels were quite similar. A simple miniaturized device for microanalysis was proposed. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of conjugated polymers in the gas and volatile organic compounds (VOCs) detections represents an advance in the development of the electronic noses. Polythiophenes show good thermal and environmental stability, are easily synthesized and they have been studied as gas and VOCs sensors using different principles or transduction techniques. Among these techniques, optical sensing has been attracted attention, mainly due to its versatility. However, conjugated polymer-based optical sensors are still less studied. This paper describes the use of two poly(3-alkylthiophenes) for VOCs optical detection. The sensing measurements were carried out using visible spectroscopy. Both polymers showed good sensitivity to the VOCs, showing fast and reversible responses with some hysteresis, and were unable to detect hydroxylated samples. Furthermore, it was demonstrated that the thickness of polymer films influences the intensity of the optical response. Although there is similarity in the superficial composition of the polymers films, demonstrated by their surface energies, they showed significant differences in their optical properties upon exposure to the VOCs. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phytase (myo-inositol hexaphosphate phosphohydrolase) and phytic acid (myo-inositol hexaphosphate) play an important environmental role, in addition to being a health issue in food industry. Phytic acid is antinutritional due to its ability to chelate metal ions and may also react with proteins decreasing their bioavailability. In this work, we produced biosensors with phytase immobilized in Layer-by-Layer (LbL) films, which could detect phytic acid with a detection limit of 0.19 mmol L-1, which is sufficient to detect phytic acid in seeds of grains and vegetables. The biosensosrs consisted of LbL films containing up to eight bilayers of phytase alternated with poly(allylamine) hydrochloride (PAH) deposited onto an indium-tin oxide (ITO) substrate modified with Prussian Blue. Amperometric detection was conducted in an acetate buffer solution (at pH 5.5) at room temperature, with the biosensor response attributed to the formation of phosphate ions. In subsidiary experiments with the currents measured at 0.0 V (vs. SCE), we demonstrated the absence of effects from some interferents, pointing to a good selectivity of the biosensor. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vanadium pentoxide xerogels (VXG) incorporating meso(3- and 4-pyridyl)porphyrin cobalt(III) species coordinated to four [Ru(bipy)(2)Cl](+) complexes were employed as gas sensing materials capable of detecting small amounts of water in commercial ethanol and fuel supplies. According to their X-ray diffraction data, the original VXG lamellar framework was maintained in the nanocomposite material, but the interlamellar distance increased from 11.7 to 15.2 angstrom, reflecting the intercalation of the porphyrin species into the vanadium pentoxide matrix. The films generated by direct deposition of the nanocomposite aqueous suspensions exhibited good electrical and electrochemical performance for application in resistive sensors. The analysis of water in ethanol and fuels was carried out successfully using an especially designed electric setup incorporating a laminar gas flow chamber and interdigitated gold electrodes coated with the nanocomposites. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper outlines the results obtained with biosensors designed for urea amperometric detection. The incorporation of urease into a bipolymeric substrate consisting of poly(pyrrole) and poly(5-amino-1-naphthol) was performed through four different approaches: direct adsorption, entrapment in cellulose acetate layer. cross-linking with glutaraldehyde, and also covalent attachment to the polymeric matrix. Poly(pyrrole) acts as amperometric transducer in these biosensors, while poly(5-amino-1-naphthol) drastically reduces the interference signal of agents such as ascorbic and uric acids. The biosensors containing urease covalently attached to the substrate provided interesting results in terms of sensitivity towards urea (0.50 mu A cm(-2) mmol(-1) L), lifetime (20 days) and short response times, due to the enzyme immobilization method used. All biosensors analyzed showed also a wide linear concentration range (up to 100 mmol L(-1)) and low detection limits (0.22-0.58 mmol L(-1)). (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we describe the electrosynthesis of poly[(2-bromo-5-hexyloxy- 1,4-phenylenevinylene)-co-(1,4-phenylenevinylene)] (BHPPV-co-PPV), a novel conducting copolymer, and its application as active layer of a chemiresistive gas sensor suitable for quantification of ethanol present in ethanol-gasoline mixtures normally present in the fuel tanks of flex-fuel vehicles. This information is crucial for the smooth operation of the engine since it permits optimal air:fuel ratio regulation. The sensor consists of an interdigitated electrode coated with a thin polymer film doped with dodecylbenzenesulfonic acid. On exposure to fuel vapours at room temperature, the device presents a linear correlation between its electrical conductance and the ethanol concentration in the fuel. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrocatalytic oxidation of glycine by doped nickel hydroxide modified electrodes and their use as sensors are described. The electrode modification was carried out by a simple electrochemical coprecipitation and its electrochemical properties were investigated. The modified electrode presented activity for glycine oxidation after applying a potential required to form NiOOH (similar to 0.45 V vs Ag/AgCl). In these conditions a sensitivity of 0.92 mu A mmol(-1) L and a linear response range from 0.1 up to 1.2 mmol L(-1) were achieved in the electrolytic Solutions at PH 12.6. Limits of detection and quantification were found to be 30 and 110 mu mol L(-1), respectively. Kinetic studies performed with rotating disk electrode (RDE) and by chronoamperometry allowed to determine the heterogeneous rate constant of 4.3 x 10(2) mol(-1) Ls(-1), Suggesting that NiOOH is a good electrocatalyst for glycine oxidation. NiOOH activity to oxidize other amino acids was also investigated, (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel poly(p-xylylene), PPX, derivative bearing alkoxyphenyl side groups was electrochemically synthesized in 87% yield. The polymer, poly(4`-hexyloxy-2,5-biphenyleneethylene) (PHBPE), presented a fraction (92%) soluble in common organic solvents. It showed to be thermally resistant up to 185 degrees C. UV-vis analysis revealed an E-gap of 3.5 eV Gas sensors made from thin films of 10-camphorsulfonic acid-doped PHBPE deposited on interdigitated electrodes exhibited significant changes in electrical conductance upon exposure to five VHOCs: 1,2-dichloroethane, bromochloromethane, trichloromethane, dichloromethane and tetrachloromethane. The conductance decreased after exposure to tetrachloromethane and increased after exposure to all the other VHOCs. Three-dimensional plots of relative response versus time of half response versus time of half recovery showed good discrimination between the five VHOCs tested. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymeric electroactive blends formed by electropolymerized aniline inside a non-conductive polyacrylamide porous matrix were already shown as suitable materials for the electrocontrolled release of model compounds like safranin. In this paper the intermolecular interactions between the two components of the blend are put in evidence by Raman spectroscopy measurements. Also, in situ optical microscopy was used to follow changes occurring in the polyaniline/polyacrylamide blend during pyrocathecol violet release tests. These two sets of experiments show the possibility of controlling electrochemically the release of both, safranin (a cation) and pyrocathecol violet (an anion) and allow to infer a release mechanism based on the electromechanical properties of the blends explaining the dependence of the release kinetics on the applied potential. Tetracycline release curves for different potentials and pHs are shown and the obtained profiles are in agreement with those expected for a device acting as an electrochemically driven pump due to the artificial muscle properties of the conducting phase of the blends. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes an automatic device for in situ and continuous monitoring of the ageing process occurring in natural and synthetic resins widely used in art and in the conservation and restoration of cultural artefacts. The results of tests carried out under accelerated ageing conditions are also presented. This easy-to-assemble palm-top device, essentially consists of oscillators based on quartz crystal resonators coated with films of the organic materials whose response to environmental stress is to be addressed. The device contains a microcontroller which selects at pre-defined time intervals the oscillators and records and stores their oscillation frequency. The ageing of the coatings, caused by the environmental stress and resulting in a shift in the oscillation frequency of the modified crystals, can be straightforwardly monitored in this way. The kinetics of this process reflects the level of risk damage associated with a specific microenvironment. In this case, natural and artificial resins, broadly employed in art and restoration of artistic and archaeological artefacts (dammar and Paraloid B72), were applied onto the crystals. The environmental stress was represented by visible and UV radiation, since the chosen materials are known to be photochemically active, to different extents. In the case of dammar, the results obtained are consistent with previous data obtained using a bench-top equipment by impedance analysis through discrete measurements and confirm that the ageing of this material is reflected in the gravimetric response of the modified quartz crystals. As for Paraloid B72, the outcome of the assays indicates that the resin is resistant to visible light, but is very sensitive to UV irradiation. The use of a continuous monitoring system, apart from being obviously more practical, is essential to identify short-term (i.e. reversible) events, like water vapour adsorption/desorption processes, and to highlight ageing trends or sudden changes of such trends. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports the utilization of two methodologies for carbaryl determination in tomatoes. The measurements were carried out using an amperometric biosensor technique based on the inhibition of acetylcholinesterase activity due to carbaryl adsorption and a HPLC procedure. The electrochemical experiments were performed in 0.1 mol L-1 phosphate buffer solutions at pH 7.4 with an incubation time of 8 min. The analytical curve obtained in pure solutions showed excellent linearity in the 5.0 x 10(-5) to 75 x 10(-5) mol L-1 range, with the limit of detection at 0.4 x 10(-3) gL(-1). The application of such a methodology in tomato samples involved solely liquidising the samples, which were spiked with 6.0 x 10(-6) and 5.0 x 10(-5) mol L-1 carbaryl. Recovery in such samples presented values of 99.0 and 92.4%, respectively. In order to obtain a comparison, HPLC experiments were also conducted under similar conditions. However, the tomato samples have to be manipulated by an extraction procedure (MSPD), which yielded much lower recovery values (78.3 and 84.8%, respectively). On the other hand, the detection limit obtained was much lower than that for the biosensor, i.e., 3.2 x 10(-6) g L-1. Finally, the biosensor methodology was employed to analyze carbaryl directly inside the tomato, without any previous manipulation. In this case, the biosensor was immersed in the tomato pulp, which had previously been spiked with the pesticide for 8 min, removed and inserted in the electrochemical cell. A recovery of 83.4% was obtained, showing very low interference of the matrix constituents. (C) 2007 Elsevier B.V. All rights reserved.