33 resultados para SOFTWARE ENGINEERING BY EXAMPLES
Resumo:
Reusable and evolvable Software Engineering Environments (SEES) are essential to software production and have increasingly become a need. In another perspective, software architectures and reference architectures have played a significant role in determining the success of software systems. In this paper we present a reference architecture for SEEs, named RefASSET, which is based on concepts coming from the aspect-oriented approach. This architecture is specialized to the software testing domain and the development of tools for that domain is discussed. This and other case studies have pointed out that the use of aspects in RefASSET provides a better Separation of Concerns, resulting in reusable and evolvable SEEs. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Visualization of high-dimensional data requires a mapping to a visual space. Whenever the goal is to preserve similarity relations a frequent strategy is to use 2D projections, which afford intuitive interactive exploration, e. g., by users locating and selecting groups and gradually drilling down to individual objects. In this paper, we propose a framework for projecting high-dimensional data to 3D visual spaces, based on a generalization of the Least-Square Projection (LSP). We compare projections to 2D and 3D visual spaces both quantitatively and through a user study considering certain exploration tasks. The quantitative analysis confirms that 3D projections outperform 2D projections in terms of precision. The user study indicates that certain tasks can be more reliably and confidently answered with 3D projections. Nonetheless, as 3D projections are displayed on 2D screens, interaction is more difficult. Therefore, we incorporate suitable interaction functionalities into a framework that supports 3D transformations, predefined optimal 2D views, coordinated 2D and 3D views, and hierarchical 3D cluster definition and exploration. For visually encoding data clusters in a 3D setup, we employ color coding of projected data points as well as four types of surface renderings. A second user study evaluates the suitability of these visual encodings. Several examples illustrate the framework`s applicability for both visual exploration of multidimensional abstract (non-spatial) data as well as the feature space of multi-variate spatial data.
Resumo:
Document engineering is the computer science discipline that investigates systems for documents in any form and in all media. As with the relationship between software engineering and software, document engineering is concerned with principles, tools and processes that improve our ability to create, manage, and maintain documents (http://www.documentengineering.org). The ACM Symposium on Document Engineering is an annual meeting of researchers active in document engineering: it is sponsored by ACM by means of the ACM SIGWEB Special Interest Group. In this editorial, we first point to work carried out in the context of document engineering, which are directly related to multimedia tools and applications. We conclude with a summary of the papers presented in this special issue.
Resumo:
This paper aims at identifying some of the key factors in adopting an organization-wide software reuse program. The factors are derived from practical experience reported by industry professionals, through a survey involving 57 Brazilian small, medium and large software organizations. Some of them produce software with commonality between applications, and have mature processes, while others successfully achieved reuse through isolated, ad hoe efforts. The paper compiles the answers from the survey participants, showing which factors were more associated with reuse success. Based on this relationship, a guide is presented, pointing out which factors should be more strongly considered by small, medium and large organizations attempting to establish a reuse program. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
This paper describes a novel template-based meshing approach for generating good quality quadrilateral meshes from 2D digital images. This approach builds upon an existing image-based mesh generation technique called Imeshp, which enables us to create a segmented triangle mesh from an image without the need for an image segmentation step. Our approach generates a quadrilateral mesh using an indirect scheme, which converts the segmented triangle mesh created by the initial steps of the Imesh technique into a quadrilateral one. The triangle-to-quadrilateral conversion makes use of template meshes of triangles. To ensure good element quality, the conversion step is followed by a smoothing step, which is based on a new optimization-based procedure. We show several examples of meshes generated by our approach, and present a thorough experimental evaluation of the quality of the meshes given as examples.
Resumo:
This paper describes a collocation method for numerically solving Cauchy-type linear singular integro-differential equations. The numerical method is based on the transformation of the integro-differential equation into an integral equation, and then applying a collocation method to solve the latter. The collocation points are chosen as the Chebyshev nodes. Uniform convergence of the resulting method is then discussed. Numerical examples are presented and solved by the numerical techniques.
Resumo:
In this note we discuss the convergence of Newton`s method for minimization. We present examples in which the Newton iterates satisfy the Wolfe conditions and the Hessian is positive definite at each step and yet the iterates converge to a non-stationary point. These examples answer a question posed by Fletcher in his 1987 book Practical methods of optimization.
Resumo:
In Information Visualization, adding and removing data elements can strongly impact the underlying visual space. We have developed an inherently incremental technique (incBoard) that maintains a coherent disposition of elements from a dynamic multidimensional data set on a 2D grid as the set changes. Here, we introduce a novel layout that uses pairwise similarity from grid neighbors, as defined in incBoard, to reposition elements on the visual space, free from constraints imposed by the grid. The board continues to be updated and can be displayed alongside the new space. As similar items are placed together, while dissimilar neighbors are moved apart, it supports users in the identification of clusters and subsets of related elements. Densely populated areas identified in the incSpace can be efficiently explored with the corresponding incBoard visualization, which is not susceptible to occlusion. The solution remains inherently incremental and maintains a coherent disposition of elements, even for fully renewed sets. The algorithm considers relative positions for the initial placement of elements, and raw dissimilarity to fine tune the visualization. It has low computational cost, with complexity depending only on the size of the currently viewed subset, V. Thus, a data set of size N can be sequentially displayed in O(N) time, reaching O(N (2)) only if the complete set is simultaneously displayed.
Resumo:
While watching TV, viewers use the remote control to turn the TV set on and off, change channel and volume, to adjust the image and audio settings, etc. Worldwide, research institutes collect information about audience measurement, which can also be used to provide personalization and recommendation services, among others. The interactive digital TV offers viewers the opportunity to interact with interactive applications associated with the broadcast program. Interactive TV infrastructure supports the capture of the user-TV interaction at fine-grained levels. In this paper we propose the capture of all the user interaction with a TV remote control-including short term and instant interactions: we argue that the corresponding captured information can be used to create content pervasively and automatically, and that this content can be used by a wide variety of services, such as audience measurement, personalization and recommendation services. The capture of fine grained data about instant and interval-based interactions also allows the underlying infrastructure to offer services at the same scale, such as annotation services and adaptative applications. We present the main modules of an infrastructure for TV-based services, along with a detailed example of a document used to record the user-remote control interaction. Our approach is evaluated by means of a proof-of-concept prototype which uses the Brazilian Digital TV System, the Ginga-NCL middleware.
Resumo:
The problem of projecting multidimensional data into lower dimensions has been pursued by many researchers due to its potential application to data analyses of various kinds. This paper presents a novel multidimensional projection technique based on least square approximations. The approximations compute the coordinates of a set of projected points based on the coordinates of a reduced number of control points with defined geometry. We name the technique Least Square Projections ( LSP). From an initial projection of the control points, LSP defines the positioning of their neighboring points through a numerical solution that aims at preserving a similarity relationship between the points given by a metric in mD. In order to perform the projection, a small number of distance calculations are necessary, and no repositioning of the points is required to obtain a final solution with satisfactory precision. The results show the capability of the technique to form groups of points by degree of similarity in 2D. We illustrate that capability through its application to mapping collections of textual documents from varied sources, a strategic yet difficult application. LSP is faster and more accurate than other existing high-quality methods, particularly where it was mostly tested, that is, for mapping text sets.
Resumo:
The literature reports research efforts allowing the editing of interactive TV multimedia documents by end-users. In this article we propose complementary contributions relative to end-user generated interactive video, video tagging, and collaboration. In earlier work we proposed the watch-and-comment (WaC) paradigm as the seamless capture of an individual`s comments so that corresponding annotated interactive videos be automatically generated. As a proof of concept, we implemented a prototype application, the WACTOOL, that supports the capture of digital ink and voice comments over individual frames and segments of the video, producing a declarative document that specifies both: different media stream structure and synchronization. In this article, we extend the WaC paradigm in two ways. First, user-video interactions are associated with edit commands and digital ink operations. Second, focusing on collaboration and distribution issues, we employ annotations as simple containers for context information by using them as tags in order to organize, store and distribute information in a P2P-based multimedia capture platform. We highlight the design principles of the watch-and-comment paradigm, and demonstrate related results including the current version of the WACTOOL and its architecture. We also illustrate how an interactive video produced by the WACTOOL can be rendered in an interactive video environment, the Ginga-NCL player, and include results from a preliminary evaluation.
Resumo:
Existence of positive solutions for a fourth order equation with nonlinear boundary conditions, which models deformations of beams on elastic supports, is considered using fixed points theorems in cones of ordered Banach spaces. Iterative and numerical solutions are also considered. (C) 2010 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
Generating quadrilateral meshes is a highly non-trivial task, as design decisions are frequently driven by specific application demands. Automatic techniques can optimize objective quality metrics, such as mesh regularity, orthogonality, alignment and adaptivity; however, they cannot make subjective design decisions. There are a few quad meshing approaches that offer some mechanisms to include the user in the mesh generation process; however, these techniques either require a large amount of user interaction or do not provide necessary or easy to use inputs. Here, we propose a template-based approach for generating quad-only meshes from triangle surfaces. Our approach offers a flexible mechanism to allow external input, through the definition of alignment features that are respected during the mesh generation process. While allowing user inputs to support subjective design decisions, our approach also takes into account objective quality metrics to produce semi-regular, quad-only meshes that align well to desired surface features. Published by Elsevier Ltd.
Resumo:
We introduce a flexible technique for interactive exploration of vector field data through classification derived from user-specified feature templates. Our method is founded on the observation that, while similar features within the vector field may be spatially disparate, they share similar neighborhood characteristics. Users generate feature-based visualizations by interactively highlighting well-accepted and domain specific representative feature points. Feature exploration begins with the computation of attributes that describe the neighborhood of each sample within the input vector field. Compilation of these attributes forms a representation of the vector field samples in the attribute space. We project the attribute points onto the canonical 2D plane to enable interactive exploration of the vector field using a painting interface. The projection encodes the similarities between vector field points within the distances computed between their associated attribute points. The proposed method is performed at interactive rates for enhanced user experience and is completely flexible as showcased by the simultaneous identification of diverse feature types.
Resumo:
In this work we introduce a new hierarchical surface decomposition method for multiscale analysis of surface meshes. In contrast to other multiresolution methods, our approach relies on spectral properties of the surface to build a binary hierarchical decomposition. Namely, we utilize the first nontrivial eigenfunction of the Laplace-Beltrami operator to recursively decompose the surface. For this reason we coin our surface decomposition the Fiedler tree. Using the Fiedler tree ensures a number of attractive properties, including: mesh-independent decomposition, well-formed and nearly equi-areal surface patches, and noise robustness. We show how the evenly distributed patches can be exploited for generating multiresolution high quality uniform meshes. Additionally, our decomposition permits a natural means for carrying out wavelet methods, resulting in an intuitive method for producing feature-sensitive meshes at multiple scales. Published by Elsevier Ltd.