104 resultados para Pancreatic Elastase
Resumo:
Heparin has been shown to regulate human neutrophil elastase (HNE) activity. We have assessed the regulatory effect of heparin on Tissue Inhibitor of Metalloproteases-1 [TIMP-1] hydrolysis by HNE employing the recombinant form of TIMP-1 and correlated FRET-peptides comprising the TIMP-1 cleavage site. Heparin accelerates 2.5-fold TIMP-1 hydrolysis by HNE. The kinetic parameters of this reaction were monitored with the aid of a FRET-peptide substrate that mimics the TIMP-1 cleavage site in pre-steady-state conditionsby using a stopped-flow fluorescence system. The hydrolysis of the FRET-peptide substrate by HNE exhibits a pre-steady-state burst phase followed by a linear, steady-state pseudo-first-order reaction. The HNE acylation step (k(2)=21 +/- 1 s(-1)) was much higher than the HNE deacylation step (k(3)=0.57 +/- 0.05 s(-1)). The presence of heparin induces a dramatic effect in the pre-steady-state behavior of HNE. Heparin induces transient lag phase kinetics in HNE cleavage of the FRET-peptide substrate. The pre-steady-state analysis revealed that heparin affects all steps of the reaction through enhancing the ES complex concentration, increasing k(1) 2.4-fold and reducing k(-1) 3.1-fold. Heparin also promotes a 7.8-fold decrease in the k(2) value, whereas the k(3) value in the presence of heparin was increased 58-fold. These results clearly show that heparin binding accelerates deacylation and slows down acylation. Heparin shifts the HNE pH activity profile to the right, allowing HNE to be active at alkaline pH. Molecular docking and kinetic analysis suggest that heparin induces conformational changes in HNE structure. Here, we are showing for the first time that heparin is able to accelerate the hydrolysis of TIMP-1 by HNE. The degradation of TIMP-1is associated to important physiopathological states involving excessive activation of MMPs.
Resumo:
Dipeptide syntheses starting from Ac-L-Tyr-OEt or Z-L-X-OMe (X: Asp, Tyr, Phe, Arg, Lys or Thr) and glycine amide in biphasic reaction media were achieved using two commercially available porcine pancreatic lipase (PPL) preparations (crude (cPPL) and purified PPL (pPPL)). Under the mild conditions employed, α-chymotrypsin, a pancreatic protease that also presents esterase activity, catalyzed Ac-L-Tyr-Gly-NH2 synthesis with high productivity. Product hydrolysis also occurred in most of the syntheses studied. Polyacrylamide gel electrophoresis, enzymatic assays employing specific chromogenic substrates and size-exclusion chromatography revealed that cPPL and pPPL contain contaminant proteases and, therefore, exhibit esterase and amidase activities. Overall, these data indicate that those contaminants may be the main catalysts of peptide bond synthesis when Nα-blocked-L-amino acid esters and the commercial PPL preparations are used. On the other hand, such data do not contest the possibility of using such enzyme preparations as an inexpensive source of catalysts for dipeptide synthesis under soft conditions.
Resumo:
Background: Toll-like receptor 4 (TLR4) is widely recognized as an essential element in the triggering of innate immunity, binding pathogen-associated molecules such as Lipopolysaccharide (LPS), and in initiating a cascade of pro-inflammatory events. Evidence for TLR4 expression in non-immune cells, including pancreatic beta-cells, has been shown, but, the functional role of TLR4 in the physiology of human pancreatic beta-cells is still to be clearly established. We investigated whether TLR4 is present in beta-cells purified from freshly isolated human islets and confirmed the results using MIN6 mouse insulinoma cells, by analyzing the effects of TLR4 expression on cell viability and insulin homeostasis. Results: CD11b positive macrophages were practically absent from isolated human islets obtained from nondiabetic brain-dead donors, and TLR4 mRNA and cell surface expression were restricted to beta-cells. A significant loss of cell viability was observed in these beta-cells indicating a possible relationship with TLR4 expression. Monitoring gene expression in beta-cells exposed for 48h to the prototypical TLR4 ligand LPS showed a concentration-dependent increase in TLR4 and CD14 transcripts and decreased insulin content and secretion. TLR4-positive MIN6 cells were also LPS-responsive, increasing TLR4 and CD14 mRNA levels and decreasing cell viability and insulin content. Conclusions: Taken together, our data indicate a novel function for TLR4 as a molecule capable of altering homeostasis of pancreatic beta-cells.
Resumo:
Neonatal diabetes is a rare monogenic form of diabetes that usually presents within the first six months of life. It is commonly caused by gain-of-function mutations in the genes encoding the Kir6.2 and SUR1 subunits of the plasmalemmal ATP-sensitive K(+) (K(ATP)) channel. To better understand this disease, we generated a mouse expressing a Kir6.2 mutation (V59M) that causes neonatal diabetes in humans and we used Cre-lox technology to express the mutation specifically in pancreatic beta cells. These beta-V59M mice developed severe diabetes soon after birth, and by 5 weeks of age, blood glucose levels were markedly increased and insulin was undetectable. Islets isolated from beta-V59M mice secreted substantially less insulin and showed a smaller increase in intracellular calcium in response to glucose. This was due to a reduced sensitivity of K(ATP) channels in pancreatic beta cells to inhibition by ATP or glucose. In contrast, the sulfonylurea tolbutamide, a specific blocker of K(ATP) channels, closed K(ATP) channels, elevated intracellular calcium levels, and stimulated insulin release in beta-V59M beta cells, indicating that events downstream of K(ATP) channel closure remained intact. Expression of the V59M Kir6.2 mutation in pancreatic beta cells alone is thus sufficient to recapitulate the neonatal diabetes observed in humans. beta-V59M islets also displayed a reduced percentage of beta cells, abnormal morphology, lower insulin content, and decreased expression of Kir6.2, SUR1, and insulin mRNA. All these changes are expected to contribute to the diabetes of beta-V59M mice. Their cause requires further investigation.
Resumo:
In addition to known heliangolides, a new eudesmanolide was isolated from the leaf rinse extract of Viguiera robusta (Asteraceae). Structural elucidation was based oil spectral analysis. It is the first report on eudesmanolides in members of the subgenus Calanticaria of Viguiera. In this work, the main isolated compound, the furanoheliangolide budlein A, besides its previously, reported in vitro and in vivo anti-inflammatory activities, inhibited human neutrophil elastase release. The inhibition was at the concentration of (16.83 +/- 1.96) mu M for formylated bacterial tripeptide (fMLP) stimulation and (11.84 +/- 1.62) mu M for platelet aggregation factor (PAF) stimulation, being slightly less active than the reference drug parthenolide. The results are important to demonstrate the potential anti-inflammatory activities of sesquiterpene lactones and corroborate the previous studies using other targets.
Resumo:
Autosomal recessive polycystic kidney disease is a hereditary fibrocystic disease that involves the kidneys and the biliary tract. Mutations in the PKHD1 gene are responsible for typical forms of autosomal recessive polycystic kidney disease. We have generated a mouse model with targeted mutation of Pkbd1 by disrupting exon 4, resulting in a mutant transcript with deletion of 66 codons and expression at similar to 30% of wild-type levels. Pkhd1(del4/d3l4) mice develop intrahepatic bile duct proliferation with progressive cyst formation and associated periportal fibrosis. In addition, these mice exhibit extrahepatic manifestations, including pancreatic cysts, splenomegaly, and common bile duct dilation. The kidneys are unaffected both histologically and functionally. Fibrocystin is expressed in the apical membranes and cilia of bile ducts and distal nephron segments but is absent from the proximal tubule. This pattern is unchanged in orthologous models of autosomal dominant polycystic kidney disease due to mutation in Pkd1 or Pkd2. Mutant fibrocystin in Pkhd1(del4/d3l4) mice also retains this expression pattern. The hypomorphic Pkhd1(del4/d3l4) mouse model provides evidence that reduced functional levels of fibrocystin are sufficient for cystogenesis and fibrosis in the liver and pancreas, but not the kidney, and supports the hypothesis of species-dependent differences in susceptibility of tissues to Pkbdl mutations.
Resumo:
Background. Pancreatic cancer is the fifth leading cause of cancer-related deaths in the world. Operative resection is the only therapeutic option with curative potential for this disease. Objective. The aim of the present study was to correlate clinical and pathologic parameters with survival in patients submitted to pancreatic resection for pancreatic adenocarcinoma. Methods. Surgical resection with curative intent (R0 and R1 resections) was performed in 65 pancreatic cancer patients between 1990 and 2006. The overall results of surgical treatment were retrospectively analyzed and compared with the clinicopathologic features of these patients. Results. Pylorus-preserving pancreatoduodenectomy was performed in 37 patients (56.9%), classic resection in 35.4%, distal pancreatectomy in 4.6% and total pancreatectomy in 3.6%. The inhospital mortality was 5% (three patients). Postoperative complications occurred in 28 patients (43%). Mean survival and five-year survival rate after curative resection were 27 months and 9.0%, respectively. Sex, TNM stage, tumor differentiation, neural invasion, tumor size and involvement of resection margin were significant prognostic factors on univariate analysis. Multivariate analysis showed tumor differentiation and neural invasion as prognostic factors. Conclusion. Patients with pancreatic cancer, even those with poor prognostic factors should be given the opportunity of surgical resection with curative intent.
Resumo:
Involvement of the celiac trunk and common hepatic artery are two of the most common forms of vascular invasion by tumours of the distal pancreas, and until recently this finding was considered a contra-indication to resection. We described a modified Appleby operation for locally advanced distal pancreatic cancer with compromised hepatic collateral flow that needed hepatic arterial revascularization, successfully accomplished by left external iliac-hepatic arterial bypass with Dacron prosthesis. Patient recovery was uneventful and he was discharged on the 10th postoperative day. Postoperative angio-CT disclosed a patent arterial bypass. Patient is well and asymptomatic 13 months after operation. At the time of this writing, postoperative CT scan showed no evidence of disease and CA 19-9 level is normal. There is a well established rationale to perform extended resection of pancreatic carcinomas that compromise vascular structures. Modified Appleby procedure can safely be performed, has oncological advantages to palliative procedures and provides relief of pain but is reserved for selected patients. Preservation of hepatic arterial flow has utmost importance to avoid hepatobiliary complications as liver necrosis, liver abscess, gallbladder necrosis or cholecystitis. In this case, hepatic revascularization was particularly challenging, but was successfully accomplished by left external iliac-hepatic arterial bypass. To our knowledge this type of arterial bypass has never been described so far in the English literature and its description may be important for surgeons dealing with advanced pancreatic cancer. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Background: A pancreatic fistula (PF) is the most common complication after pancreaticoduodenectomy (PD), and its reported incidence varies from 2% to 28%. The aim of the present study was to analyse the treatment of a complicated PF comparing the surgical approach with conservative techniques. Methods: From January 2000 through to August 2006, 121 patients were submitted for PD. The study consisted of 70 men and 47 women, with a median age of 60 years (SD +/- 12). The main indications for PD were pancreatic duct carcinoma in 52 patients (44.5%), ampullary carcinoma or adenoma in 18 (15.4%) and islet cell tumour in 11 (9.4%). Reconstruction by pancreatogastrostomy was performed in 65 patients (55.6%), and pancreatojejunostomy in 52 patients (44%). Results: Thirty-five patients (30%) developed a PF. Amongst these, 20 were managed conservatively and 14 were reoperated. These two groups of patients were compared with patients without a PF for analysis. There was no significant difference in the mean age, the gender ratio, American Society of Anesthesiologists (ASA) classification, surgical time and blood replacement, number of associated procedures, vascular resection and type of reconstruction between the three groups. There were five post-operative deaths (4.2%), three patients (21.4%) in the surgical treatment group (P < 0.01). Mean total number of complications (P = 0.02) and mean length of hospital stay (P < 0.001) were greater in the surgical group. The medium delay between the pancreatic resection and reoperation was 10 days (range, 3-32 days). Completion splenopancreatectomy was required in five patients whereas conservative treatment including debridement and drainage was applied in nine patients. Conclusion: The surgical approach for a PF is associated with a higher mortality and morbidity. There is no advantage in performing completion pancreatectomy (CP) instead of extensive drainage as a result of the same mortality and morbidity rates and the risk of endocrine insufficiency. In cases of complicated PF, radiological or surgical conservative treatment is recommended.
Resumo:
Severe acute pancreatitis is associated with high morbidity and mortality rates. At the present time, no specific therapy has been shown to be uniformly effective in reducing morbidity and mortality in this disease. The aim of this study was to determine the effects of pentoxifylline on the pancreatic and systemic inflammatory process, pancreatic infection, and mortality rate in severe acute pancreatitis in rats. Methods: One hundred and twenty male Wistar rats were divided into 3 groups: sham, pancreatitis, and pentoxifylline (acute pancreatitis induction plus administration of 25 mg/kg pentoxifylline). Inflammatory response was measured by histological studies, inflammatory cytokine production (IL-6, IL-10, and TNF-alpha), and mortality rate. Pancreatic infection was evaluated by bacterial cultures expressed in colony-forming units per gram. Results: Pentoxifylline-treated animals had a statistically significant reduction of inflammatory cytokine levels, pancreatic histological damage, occurrence of bacterial translocation and pancreatic infection (p < 0.05), associated with a significant reduction in mortality rate. Conclusions: Pentoxifylline administration in this experimental model of acute pancreatitis reduces local and systemic inflammatory responses and decreases the pancreatic infection and the mortality rate. Copyright (C) 2009 S. Karger AG, Basel and IAP
Resumo:
Becari C, Teixeira FR, Oliveira EB, Salgado MC. Angiotensin-converting enzyme inhibition augments the expression of rat elastase- 2, an angiotensin II-forming enzyme. Am J Physiol Heart Circ Physiol 301: H565-H570, 2011. First published May 20, 2011; doi:10.1152/ajpheart.00534.2010.-Mounting evidence suggest that tissue levels of angiotensin (ANG) II are maintained in animals submitted to chronic angiotensin-converting enzyme (ACE) inhibitor treatment. We examined the expression levels of transcripts for elastase-2, a chymostatin-sensitive serine protease identified as the alternative pathway for ANG II generation from ANG I in the rat vascular tissue and the relative role of ACE-dependent and -independent pathways in generating ANG II in the rat isolated carotid artery rings of spontaneously hypertensive rats (SHR) and Wistar normotensive rats (WNR) treated with enalapril for 7 days. Enalapril treatment decreased blood pressure of SHR only and resulted in significantly more elastase-2 mRNA expression in carotid artery of both enalapril-treated WNR and SHR. Captopril induced a comparable rightward shift of concentration-response curves to ANG I in vehicle and enalapril-treated rats, although this effect was of lesser magnitude in SHR group. Chymostatin induced a rightward shift of the dose response to ANG I in vehicle-treated and a decrease in maximal effect of 22% in enalapril-treated WNR group. Maximal response induced by ANG I was remarkably reduced by chymostatin in enalapril-treated SHR carotid artery (by 80%) compared with controls (by 23%). Our data show that chronic ACE inhibition was associated with augmented functional role of non-ACE pathway in generating ANG II and increased elastase-2 gene expression, suggesting that this protease may contribute as an alternative pathway for ANG II generation when ACE is inhibited in the rat vascular tissue.
Resumo:
Background and Aims: Endoscopic ultrasound (EUS) is useful for the treatment of sterile pancreatic fluid collections (PFC), either by means of transmural drainage or by complete aspiration. The aim of this study was to evaluate the efficacy and safety of single-step EUS-guided endoscopic approaches for treatment of sterile PFC. Patients and Methods: During a 3-year period, 77 consecutive patients with symptomatic, persistent sterile PFC were evaluated and treated with the linear EUS. We excluded patients with grossly purulent collections, chronic pseudocyst and those whose cytology diagnostic was neoplastic cyst of pancreas. 44 patients received a single 10-Fr plastic straight stent under EUS or fluoroscopic control (group I) and 33 of these underwent a single-step complete aspiration with a 19-gauge needle (group II). Results: The mean size of the sterile PFC was 48 mm in group I and 28 mm in group II (p < 0.001). Overall, endoscopic treatment was successful in 70 (90.9%) patients. The mean volume aspirated was 25 (18-65) ml. The total number of procedures was 50 in group I and 41 punctures in group II. After a mean follow-up of 64 +/- 15.6 weeks there were 6 complications 13.6%): 2 recurrences (referred to surgery), 2 developing abscesses (submitted a new EUS-guided endoscopic drainage with success), 1 perforation that died (2.2%), and 1 case of bleeding (sent to surgery) in group I. In group II there were only 6 (18.1%) recurrences (submitted a new EUS-guided aspiration). None of the patients undergoing single-step aspiration developed infections, perforation or hemorrhage. Conclusion: The recurrence of pancreatic pseudocysts after endoscopic treatment was similar, either by means of plastic stents or by complete single-step aspiration. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Rafacho A, Cestari TM, Taboga SR, Boschero AC, Bosqueiro JR. High doses of dexamethasone induce increased beta-cell proliferation in pancreatic rat islets. Am J Physiol Endocrinol Metab 296: E681-E689, 2009. First published January 21, 2009; doi:10.1152/ajpendo.90931.2008.-Activation of insulin signaling and cell cycle intermediates is required for adult beta-cell proliferation. Here, we report a model to study beta-cell proliferation in living rats by administering three different doses of dexamethasone (0.1, 0.5, and 1.0 mg/kg ip, DEX 0.1, DEX 0.5, and DEX 1.0, respectively) for 5 days. Insulin sensitivity, insulin secretion, and histomorphometric data were investigated. Western blotting was used to analyze the levels of proteins related to the control of beta-cell growth. DEX 1.0 rats, which present moderate hyperglycemia and marked hyperinsulinemia, exhibited a 5.1-fold increase in beta-cell proliferation and an increase (17%) in beta-cell size, with significant increase in beta-cell mass, compared with control rats. The hyperinsulinemic but euglycemic DEX 0.5 rats also showed a significant 3.6-fold increase in beta-cell proliferation. However, DEX 0.1 rats, which exhibited the lowest degree of insulin resistance, compensate for insulin demand by improving only islet function. Activation of the insulin receptor substrate 2/phosphatidylinositol 3-kinase/serine-threoninekinase/ribosomalprotein S6 kinase pathway, as well as protein retinoblastoma in islets from DEX 1.0 and DEX 0.5, but not in DEX 0.1, rats was also observed. Therefore, increasing doses of dexamethasone induce three different degrees of insulin requirement in living rats, serving as a model to investigate compensatory beta-cell alterations. Augmented beta-cell mass involves beta-cell hyperplasia and, to a lower extent, beta-cell hypertrophy. We suggest that alterations in circulating insulin and, to a lesser extent, glucose levels could be the major stimuli for beta-cell proliferation in the dexamethasone-induced insulin resistance.
Resumo:
The inhibitory effects of mate tea (MT), a beverage produced with leaves from Ilex paraguariensis, in vitro lipase activity and on obesity in obese mice models were examined. For the in vitro experiment, porcine and human pancreatic lipase (PL) activities were determined by measuring the rate of release of oleic acid from hydrolysis of olive oil emulsified with taurocholate, phospholipids, gum arabic, or polyvinyl alcohol. For the in vivo experiments, animals were fed with a standard diet (SD, n = 10) or high-fat diet (HFD, n = 30) for 16 weeks. After the first 8 weeks on the HFD, the animals were treated with 1 and 2 g/kg of body weight of MT. The time course of the body weight and obesity-related biochemical parameters were evaluated. The results showed that MT inhibited both porcine and human PL (half-maximal inhibitory concentration = 1.5 mg MT/ml) and induced a strong inhibition of the porcine lipase activity in the hydrolysis of substrate emulsified with taurocholate + phosphatidylcholine (PC) (83 +/- 3.8%) or PC alone (62 +/- 4.3%). MT suppressed the increases in body weight (P < 0.05) and decreased the serum triglycerides and low-density lipoprotein (LDL)-cholesterol concentrations at both doses (from 190.3 +/- 5.7 to 135.0 +/- 8.9 mg/dl, from 189.1 +/- 7.3 to 129.3 +/- 17.6 mg/dl; P < 0.05, respectively) after they had been increased by the HFD. The liver lipid content was also decreased by the diet containing MT (from 132.6 +/- 3.9 to 95.6 +/- 6.1 mg/g of tissue; P < 0.05). These results suggest that MT could be a potentially therapeutic alternative in the treatment of obesity caused by a HFD.