40 resultados para OPTIMAL ESTIMATES OF STABILITY REGION
Resumo:
The behavior of stability regions of nonlinear autonomous dynamical systems subjected to parameter variation is studied in this paper. In particular, the behavior of stability regions and stability boundaries when the system undergoes a type-zero sadle-node bifurcation on the stability boundary is investigated in this paper. It is shown that the stability regions suffer drastic changes with parameter variation if type-zero saddle-node bifurcations occur on the stability boundary. A complete characterization of these changes in the neighborhood of a type-zero saddle-node bifurcation value is presented in this paper. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
The phase transition of Reissner-Nordstrom AdS(4) interacting with a massive charged scalar field has been further revisited. We found exactly one stable and one unstable quasinormal mode region for the scalar field. The two of them are separated by the first marginally stable solution.
Resumo:
The objective of this paper is to develop a mathematical model for the synthesis of anaerobic digester networks based on the optimization of a superstructure that relies on a non-linear programming formulation. The proposed model contains the kinetic and hydraulic equations developed by Pontes and Pinto [Chemical Engineering journal 122 (2006) 65-80] for two types of digesters, namely UASB (Upflow Anaerobic Sludge Blanket) and EGSB (Expanded Granular Sludge Bed) reactors. The objective function minimizes the overall sum of the reactor volumes. The optimization results show that a recycle stream is only effective in case of a reactor with short-circuit, such as the UASB reactor. Sensitivity analysis was performed in the one and two-digester network superstructures, for the following parameters: UASB reactor short-circuit fraction and the EGSB reactor maximum organic load, and the corresponding results vary considerably in terms of digester volumes. Scenarios for three and four-digester network superstructures were optimized and compared with the results from fewer digesters. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
There is an increasing need to treat effluents contaminated with phenol with advanced oxidation processes (AOPs) to minimize their impact on the environment as well as on bacteriological populations of other wastewater treatment systems. One of the most promising AOPs is the Fenton process that relies on the Fenton reaction. Nevertheless, there are no systematic studies on Fenton reactor networks. The objective of this paper is to develop a strategy for the optimal synthesis of Fenton reactor networks. The strategy is based on a superstructure optimization approach that is represented as a mixed integer non-linear programming (MINLP) model. Network superstructures with multiple Fenton reactors are optimized with the objective of minimizing the sum of capital, operation and depreciation costs of the effluent treatment system. The optimal solutions obtained provide the reactor volumes and network configuration, as well as the quantities of the reactants used in the Fenton process. Examples based on a case study show that multi-reactor networks yield decrease of up to 45% in overall costs for the treatment plant. (C) 2010 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
Resumo:
Objectives. In this study, we aimed to identify ancestry informative haplotypes and make interethnic admixture estimates using X-chromosome markers. Methods. A significant sample (461 individuals) of European, African, and Native American populations was analyzed, and four linkage groups were identified. The data obtained were used to describe the ancestral contribution of populations from four different geographical regions of Brazil (745 individuals). Results. The global interethnic admixture estimates of the four mixed populations under investigation were calculated applying all the 24 insertion/deletion (INDEL) markers. In the North region, a larger Native Americans ancestry was observed (42%). The Northeast and Southeast regions had smaller Native American contribution (27% in both of them). In the South region, there was a large European contribution (46%). Conclusions. The estimates obtained are compatible with expectations for a colonization model with biased admixture between European men (one X chromosome) and Native American and African women (two X chromosomes), so the 24 X-INDEL panel described here can be a useful to make admixture interethnic estimates in Brazilian populations. Am. J. Hum. Biol. 22:849-852,2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
This study aims to estimate an adult-equivalent scale for calorie requirements and to determine the differences between adult-equivalent and per capita measurements of calorie availability in the Brazilian population. The study used data from the 2002-2003 Brazilian Household Budget Survey. The calorie requirement for a reference adult individual was based on the mean requirements for adult males and females (2,550kcal/day). The conversion factors were defined as the ratios between the calorie requirements for each age group and gender and that of the reference adult. The adult-equivalent calorie availability levels were higher than the per capita levels, with the largest differences in rural and low-income households. Differences in household calorie availability varied from 22kcal/day (households with adults and an adolescent) to 428kcal/day (households with elderly individuals), thus showing that per capital measurements can underestimate the real calorie availability, since they overlook differences in household composition.
Resumo:
The present research was conducted to estimate the genetic trends for meat quality traits in a male broiler line. The traits analyzed were initial pH, pH at 6 h after slaughter, final pH, initial range of falling pH, final range of falling pH, lightness, redness, yellowness, weep loss, drip loss, shrink loss, and shear force. The number of observations varied between 618 and 2125 for each trait. Genetic values were obtained by restricted maximum likelihood, and the numerator relationship matrix had 107,154 animals. The genetic trends were estimated by regression of the broiler average genetic values with respect to unit of time (generations), and the average genetic trend was estimated by regression coefficients. Generally, for the traits analyzed, small genetic trends were obtained, except for drip loss and shear force, which were higher. The small magnitude of the trends found could be a consequence of the absence of selection for meat quality traits in the line analyzed. The estimates of genetic trends obtained were an indication of an improvement in the meat quality traits in the line analyzed, except for drip loss.
Resumo:
Data from the slaughter of 24,001 chickens that were part of a selection program for the production of commercial broilers were used to estimate genetic trend for absolute carcass (CW), breast meat (BRW), and leg (LW) weights, and relative carcass (CY), breast meat (BRY), and leg (LY) weights. The components of (co) variance and breeding values of individuals were obtained by the restricted maximum likelihood method applied to animal models. The relationship matrix was composed of 132,442 birds. The models included as random effects, maternal additive genetic and permanent environmental for CW, BRW, LW, CY, and BRY, and only maternal permanent environmental for LY, besides the direct additive genetic and residual effects, and as fixed effects, hatch week, parents' mating group and sex. The estimates of genetic trend were obtained by average regression of breeding value on generation, and the average genetic trend was estimated by regression coefficients. The genetic trends for CW (+ 6.0336 g/generation), BRW (+ 3.6723 g/generation), LW (+ 1.5846 g/generation), CY (+ 0.1195%/generation), and BRY (+ 0.1388%/generation) were positive, and they were in accordance with the objectives of the selection program for these traits. The genetic trend for LY(-0.0019%/generation) was negative, possibly due to the strong emphasis on selection for BRY and the negative correlations between these two traits.
Resumo:
We show a function that fits well the probability density of return times between two consecutive visits of a chaotic trajectory to finite size regions in phase space. It deviates from the exponential statistics by a small power-law term, a term that represents the deterministic manifestation of the dynamics. We also show how one can quickly and easily estimate the Kolmogorov-Sinai entropy and the short-term correlation function by realizing observations of high probable returns. Our analyses are performed numerically in the Henon map and experimentally in a Chua's circuit. Finally, we discuss how our approach can be used to treat the data coming from experimental complex systems and for technological applications. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3263943]
Resumo:
The optimal discrimination of nonorthogonal quantum states with minimum error probability is a fundamental task in quantum measurement theory as well as an important primitive in optical communication. In this work, we propose and experimentally realize a new and simple quantum measurement strategy capable of discriminating two coherent states with smaller error probabilities than can be obtained using the standard measurement devices: the Kennedy receiver and the homodyne receiver.
Resumo:
The conditions for maximization of the enzymatic activity of lipase entrapped in sol-gel matrix were determined for different vegetable oils using an experimental design. The effects of pH, temperature, and biocatalyst loading on lipase activity were verified using a central composite experimental design leading to a set of 13 assays and the surface response analysis. For canola oil and entrapped lipase, statistical analyses showed significant effects for pH and temperature and also the interactions between pH and temperature and temperature and biocatalyst loading. For the olive oil and entrapped lipase, it was verified that the pH was the only variable statistically significant. This study demonstrated that response surface analysis is a methodology appropriate for the maximization of the percentage of hydrolysis, as a function of pH, temperature, and lipase loading.
Resumo:
This work explores the design of piezoelectric transducers based on functional material gradation, here named functionally graded piezoelectric transducer (FGPT). Depending on the applications, FGPTs must achieve several goals, which are essentially related to the transducer resonance frequency, vibration modes, and excitation strength at specific resonance frequencies. Several approaches can be used to achieve these goals; however, this work focuses on finding the optimal material gradation of FGPTs by means of topology optimization. Three objective functions are proposed: (i) to obtain the FGPT optimal material gradation for maximizing specified resonance frequencies; (ii) to design piezoelectric resonators, thus, the optimal material gradation is found for achieving desirable eigenvalues and eigenmodes; and (iii) to find the optimal material distribution of FGPTs, which maximizes specified excitation strength. To track the desirable vibration mode, a mode-tracking method utilizing the `modal assurance criterion` is applied. The continuous change of piezoelectric, dielectric, and elastic properties is achieved by using the graded finite element concept. The optimization algorithm is constructed based on sequential linear programming, and the concept of continuum approximation of material distribution. To illustrate the method, 2D FGPTs are designed for each objective function. In addition, the FGPT performance is compared with the non-FGPT one.
Resumo:
The computational design of a composite where the properties of its constituents change gradually within a unit cell can be successfully achieved by means of a material design method that combines topology optimization with homogenization. This is an iterative numerical method, which leads to changes in the composite material unit cell until desired properties (or performance) are obtained. Such method has been applied to several types of materials in the last few years. In this work, the objective is to extend the material design method to obtain functionally graded material architectures, i.e. materials that are graded at the local level (e.g. microstructural level). Consistent with this goal, a continuum distribution of the design variable inside the finite element domain is considered to represent a fully continuous material variation during the design process. Thus the topology optimization naturally leads to a smoothly graded material system. To illustrate the theoretical and numerical approaches, numerical examples are provided. The homogenization method is verified by considering one-dimensional material gradation profiles for which analytical solutions for the effective elastic properties are available. The verification of the homogenization method is extended to two dimensions considering a trigonometric material gradation, and a material variation with discontinuous derivatives. These are also used as benchmark examples to verify the optimization method for functionally graded material cell design. Finally the influence of material gradation on extreme materials is investigated, which includes materials with near-zero shear modulus, and materials with negative Poisson`s ratio.
Resumo:
In this article, we consider the stochastic optimal control problem of discrete-time linear systems subject to Markov jumps and multiplicative noise under three kinds of performance criterions related to the final value of the expectation and variance of the output. In the first problem it is desired to minimise the final variance of the output subject to a restriction on its final expectation, in the second one it is desired to maximise the final expectation of the output subject to a restriction on its final variance, and in the third one it is considered a performance criterion composed by a linear combination of the final variance and expectation of the output of the system. We present explicit sufficient conditions for the existence of an optimal control strategy for these problems, generalising previous results in the literature. We conclude this article presenting a numerical example of an asset liabilities management model for pension funds with regime switching.
Resumo:
High-performance liquid-chromatographic (HPLC) methods were validated for determination of pravastatin sodium (PS), fluvastatin sodium (FVS), atorvastatin calcium (ATC), and rosuvastatin calcium (RC) in pharmaceuticals. Two stability-indicating HPLC methods were developed with a small change (10%) in the composition of the organic modifier in the mobile phase. The HPLC method for each statin was validated using isocratic elution. An RP-18 column was used with mobile phases consisting of methanol-water (60:40, v/v, for PS and RC and 70:30, v/v, for FVS and ATC). The pH of each mobile phase was adjusted to 3.0 with orthophosphoric acid, and the flow rate was 1.0mL/min. Calibration plots showed correlation coefficients (r)0.999, which were calculated by the least square method. The detection limit (DL) and quantitation limit (QL) were 1.22 and 3.08 mu g/mL for PS, 2.02 and 6.12 mu g/mL for FVS, 0.44 and 1.34 mu g/mL for ATC, and 1.55 and 4.70 mu g/mL for RC. Intraday and interday relative standard deviations (RSDs) were 2.0%. The methods were applied successfully for quantitative determination of statins in pharmaceuticals.