221 resultados para O(6)-Methylguanine-DNA Methyltransferase
Resumo:
Identification of animals that are decomposing or have been run over or burnt and cannot be visually identified is a problem in the surveillance and control of infectious diseases. Many of these animals are wild and represent a valuable source of information for epidemiologic research as they may be carriers of an infectious agent. This article discusses the results obtained using a method for identifying mammals genetically by sequencing their mitochondrial DNA control region. Fourteen species were analyzed and identified. These included the main reservoirs and transmitters of rabies virus, namely, canids, chiroptera and primates. The results prove that this method of genetic identification is both efficient and simple and that it can be used in the surveillance of infectious diseases which includes mammals in their epidemiologic cycle, such as rabies.
Resumo:
Background: Helminthiasis and tuberculosis (TB) coincide geographically and there is much interest in exploring how concurrent worm infections might alter immune responses against bacilli and might necessitate altered therapeutic approaches. A DNA vaccine that codifies heat shock protein Hsp65 from M. leprae (DNAhsp65) has been used in therapy during experimental tuberculosis. This study focused on the impact of the co-existence of worms and TB on the therapeutic effects of DNAhsp65. Methodology/Principal Findings: Mice were infected with Toxocara canis or with Schistosoma mansoni, followed by coinfection with M. tuberculosis and treatment with DNAhsp65. While T. canis infection did not increase vulnerability to pulmonary TB, S. mansoni enhanced susceptibility to TB as shown by higher numbers of bacteria in the lungs and spleen, which was associated with an increase in Th2 and regulatory cytokines. However, in coinfected mice, the therapeutic effect of DNAhsp65 was not abrogated, as indicated by colony forming units and analysis of histopathological changes. In vitro studies indicated that Hsp65-specific IFN-gamma production was correlated with vaccine-induced protection in coinfected mice. Moreover, in S. mansoni-coinfected mice, DNA treatment inhibited in vivo TGF-beta and IL-10 production, which could be associated with long-term protection. Conclusions/Significance: We have demonstrated that the therapeutic effects of DNAhsp65 in experimental TB infection are persistent in the presence of an unrelated Th2 immune response induced by helminth infections.
Resumo:
Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), is the etiologic agent of all forms of Kaposi's sarcoma, primary effusion lymphoma and the plasmablastic cell variant of multicentric Castleman disease. In endemic areas of sub-Saharan Africa, blood transfusions have been associated with a substantial risk of HHV-8 transmission. By contrast, several studies among healthy blood donors from North America have failed to detect HHV-8 DNA in samples of seropositive individuals. In this study, using a real-time PCR assay, we investigated the presence of HHV-8 DNA in whole-blood samples of 803 HHV-8 blood donors from three Brazilian states (Sao Paulo, Amazon, Bahia) who tested positive for HHV-8 antibodies, in a previous multicenter study. HHV-8 DNA was not detected in any sample. Our findings do not support the introduction of routine HHV-8 screening among healthy blood donors in Brazil. (WC = 140).
Resumo:
T-cell based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. Moreover, polyfunctional and long-lived specific memory T cells have been associated to vaccine-induced protection. CD4(+) T cells are important for the generation and maintenance of functional CD8(+) cytotoxic T cells. We have recently developed a DNA vaccine encoding 18 conserved multiple HLA-DR-binding HIV-1 CD4 epitopes (HIVBr18), capable of eliciting broad CD4(+) T cell responses in multiple HLA class II transgenic mice. Here, we evaluated the breadth and functional profile of HIVBr18-induced immune responses in BALB/c mice. Immunized mice displayed high-magnitude, broad CD4(+)/CD8(+) T cell responses, and 8/18 vaccine-encoded peptides were recognized. In addition, HIVBr18 immunization was able to induce polyfunctional CD4(+) and CD8(+) T cells that proliferate and produce any two cytokines (IFN gamma/TNF alpha, IFN gamma/IL-2 or TNF alpha/IL-2) simultaneously in response to HIV-1 peptides. For CD4(+) T cells exclusively, we also detected cells that proliferate and produce all three tested cytokines simultaneously (IFN gamma/TNF alpha/IL-2). The vaccine also generated long-lived central and effector memory CD4(+) T cells, a desirable feature for T-cell based vaccines. By virtue of inducing broad, polyfunctional and long-lived T cell responses against conserved CD4(+) T cell epitopes, combined administration of this vaccine concept may provide sustained help for CD8(+) T cells and antibody responses-elicited by other HIV immunogens.
Resumo:
The p53 tumor suppressor gene is the most frequently mutated gene in human cancer; this gene is mutated in up to 50% of human tumors. It has a critical role in the cell cycle, apoptosis and cell senescence, and it participates in many crucial physiological and pathological processes. Polymorphisms of p53 have been suggested to be associated with genetically determined susceptibility in various types of cancer. Another process involved with the development and progression of tumors is DNA hypermethylation. Aberrant methylation of the promoter is an alternative epigenetic change in genetic mechanisms, leading to tumor suppressor gene inactivation. In the present study, we examined the TP53 Arg72Pro and Pro47Ser polymorphisms using PCR-RFLP and the pattern of methylation of the p53 gene by methylation-specific PCR in 90 extra-axial brain tumor samples. Patients who had the allele Pro of the TP53 Arg72Pro polymorphism had an increased risk of tumor development ( odds ratio, OR = 3.23; confidence interval at 95%, 95% CI = 1.71-6.08; P = 0.003), as did the allele Ser of TP53 Pro47Ser polymorphism (OR = 1.28; 95% CI = 0.03-2.10; P = 0.01). Comparison of overall survival of patients did not show significant differences. In the analysis of DNA methylation, we observed that 37.5% of meningiomas, 30% of schwannomas and 52.6% of metastases were hypermethylated, suggesting that methylation is important for tumor progression. We suggest that TP53 Pro47Ser and Arg72Pro polymorphisms and DNA hypermethylation are involved in susceptibility for developing extra-axial brain tumors.
Resumo:
Solar radiation sustains and affects all life forms on Earth. In recent years, the increase in environmental levels of solar-UV radiation due to depletion of the stratospheric ozone layer, as a result of anthropogenic emission of destructive chemicals, has highlighted serious issues of social concern. This becomes still more dramatic in tropical and subtropical regions, where the intensity of solar radiation is higher. To better understand the impact of the harmful effects of solar-UV radiation on the DNA molecule, we developed a reliable biological monitoring system based on the exposure of plasmid DNA to artificial UV lamps and sunlight. The determination and quanti. cation of different types of UV photoproducts were performed through the use of specific DNA repair enzymes and antibodies. As expected, a significant number of CPDs and 6-4PPs was observed when the DNA-dosimeter system was exposed to increasing doses of UVB radiation. Moreover, CPDs could also be clearly detected in plasmid DNA when this system was exposed to either UVA or directly to sunlight. Interestingly, although less abundant, 6-4PPs and oxidative DNA damage were also generated after exposure to both UVA and sunlight. These results confirm the genotoxic potential of sunlight, reveal that UVA may also produce CPDs and 6-4PPs directly in naked DNA and demonstrate the applicability of a DNA-dosimeter system for monitoring the biological effects of solar-UV radiation.
Resumo:
A novel solid phase extraction technique is described where DNA is bound and eluted from magnetic silica beads in a manner where efficiency is dependent on the magnetic manipulation of the beads and not on the flow of solution through a packed bed. The utility of this technique in the isolation of reasonably pure, PCR-amplifiable DNA from complex samples is shown by isolating DNA from whole human blood, and subsequently amplifying a fragment of the beta-globin gene. By effectively controlling the movement of the solid phase in the presence of a static sample, the issues associated with reproducibly packing a solid phase in a microchannel and maintaining consistent flow rates are eliminated. The technique described here is rapid, simple, and efficient, allowing for recovery of more than 60% of DNA from 0.6 mu L of blood at a concentration which is suitable for PCR amplification. In addition, the technique presented here requires inexpensive, common laboratory equipment, making it easily adopted for both clinical point-of-care applications and on-site forensic sample analysis.
Resumo:
This study outlines the quantification of low levels of Alicyclobacillus acidoterrestris in pure cultures, since this bacterium is not inactivated by pasteurization and may remain in industrialized foods and beverages. Electroconductive polymer-modified fluorine tin oxide (FTO) electrodes and multiple nanoparticle labels were used for biosensing. The detection of A. acidoterrestris in pure cultures was performed by reverse transcription polymerase chain reaction (RT-PCR) and the sensitivity was further increased by asymmetric nested RT-PCR using electrochemical detection for quantification of the amplicon. The quantification of nested RT-PCR products by Ag/Au-based electrochemical detection was able to detect 2 colony forming units per mL (CFU mL(-1)) of spores in pure culture and low detection and quantification limits (7.07 and 23.6 nM, respectively) were obtained for the target A. acidoterrestris on the electrochemical detection bioassay.
Resumo:
While evaluating several laboratory-cultured cyanobacteria strains for the presence of paralytic shellfish poison neurotoxins, the hydrophilic extract of Microcystis aeruginosa strain SPC777-isolated from Billings`s reservoir, So Paulo, Brazil-was found to exhibit lethal neurotoxic effect in mouse bioassay. The in vivo test showed symptoms that unambiguously were those produced by PSP. In order to identify the presence of neurotoxins, cells were lyophilized, and the extracts were analyzed by HPLC-FLD and HPLC-MS. HPLC-FLD analysis revealed four main Gonyautoxins: GTX4(47.6%), GTX2(29.5%), GTX1(21.9%), and GTX3(1.0%). HPLC-MS analysis, on other hand, confirmed both epimers, with positive Zwitterions M(+) 395.9 m/z for GTX3/GTX2 and M(+) 411 m/z for GTX4/GTX1 epimers. The hepatotoxins (Microcystins) were also evaluated by ELISA and HPLC-MS analyses. Positive immunoreaction was observed by ELISA assay. Alongside, the HPLC-MS analyses revealed the presence of [l-ser(7)] MCYST-RR. The N-methyltransferase (NMT) domain of the microcystin synthetase gene mcyA was chosen as the target sequence to detect the presence of the mcy gene cluster. PCR amplification of the NMT domain, using the genomic DNA of the SPC777 strain and the MSF/MSR primer set, resulted in the expected 1,369 bp product. The phylogenetic analyses grouped the NMT sequence with the NMT sequences of other known Microcystis with high bootstrap support. The taxonomical position of M. aeruginosa SPC777 was confirmed by a detailed morphological description and a phylogenetic analysis of 16S rRNA gene sequence. Therefore, co-production of PSP neurotoxins and microcystins by an isolated M. aeruginosa strain is hereby reported for the first time.
Resumo:
Geitlerinema amphibium (C. Agardh ex Gomont) Anagn. and G. unigranulatum (Rama N. Singh) Komarek et M. T. P. Azevedo are morphologically close species with characteristics frequently overlapping. Ten strains of Geitlerinema (six of G. amphibium and four of G. unigranulatum) were analyzed by DNA sequencing and transmission electronic and optical microscopy. Among the investigated strains, the two species were not separated with respect to cellular dimensions, and cellular width was the most varying characteristic. The number and localization of granules, as well as other ultrastructural characteristics, did not provide a means to discriminate between the two species. The two species were not separated either by geography or environment. These results were further corroborated by the analysis of the cpcB-cpcA intergenic spacer (PC-IGS) sequences. Given the fact that morphology is very uniform, plus the coexistence of these populations in the same habitat, it would be nearly impossible to distinguish between them in nature. On the other hand, two of the analyzed strains were distinct from all others based on the PC-IGS sequences, in spite of their morphological similarity. PC-IGS sequences indicate that these two strains could be a different species of Geitlerinema. Using morphology, cell ultrastructure, and PC-IGS sequences, it is not possible to distinguish G. amphibium and G. unigranulatum. Therefore, they should be treated as one species, G. unigranulatum as a synonym of G. amphibium.
Resumo:
(9Z,11E)-hexadecadienal and (Z11)-hexadecenal, the main sex pheromone components of the sugarcane borer, Diatraea saccharalis, were identified and quantified from four Brazilian and one Colombian populations using GC-EAD, GC-MS and GC analyses. Three different ratios were observed, 9:1,6:1, and 3:1. The pheromone concentration for the major component, (9Z,11E)-hexadecadienal, varied from 6.8 ng/gland to 21.9 ng/gland and from 1.7 ng/gland to 6.5 to the minor component, (Z11)-hexadecenal. The 25 D. saccharalis cytochrome oxidase II sequences that were analyzed showed low intra-specific variation and represented only 11 haplotypes, with the most frequent being the one represented by specimens from Sao Paulo, Parana, and Pernambuco states. Specimens from Colombia showed the highest genetic divergence from the others haplotypes studied. Data on the genetic variability among specimens, more than their geographic proximity, were in agreement with data obtained from analyses of the pheromone extracts. Our data demonstrate a variation in pheromone composition and a covariation in haplotypes of the D. saccharalis populations studied. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The well established rat hepatocarcinogen N-nitrosopytrolidine (NPYR, 1) requires metabolic activation to DNA adducts to express its carcinogenic activity. Among the NPYR-DNA adducts that have been identified, the cyclic 7,8-butanoguanine adduct 2-amino-6,7,8,9-tetrahydro-9-hydroxypyrido[2,1-f]purine-4(3H)-one (6) has been quantified using moderately sensitive methods, but its levels have never been compared to those of other DNA adducts of NPYR in rat hepatic DNA. Therefore, in this study, we developed a sensitive new LC-ESI-MS/MS-SRM method for the quantitation of adduct 6 and compared its levels to those of several other NPYR-DNA adducts formed by different mechanisms. The new method was shown to be accurate and precise, with good recoveries and low fmol detection limits. Rats were treated with NPYR by gavage at doses of 46, 92, or 184 mg/kg body weight and sacrificed 16 h later. Hepatic DNA was isolated and analyzed for NPYR-DNA adducts. Adduct 6 was by far the most prevalent, with levels ranging from about 900-3000 mu mol/mol Gua and responsive to dose. Levels of adducts formed from crotonaldehyde, a metabolite of NPYR, were about 0.2-0.9 mu mol/mol dGuo, while those of adducts resulting from reaction with DNA of tetrahydrofuranyl-like intermediates were in the range of 0.01-4 mu mol/mol deoxyribonucleoside. The results of this study demonstrate that, among typical NPYR-DNA adducts, adduct 6 is easily the most abundant in hepatic DNA. Since previous studies have shown that it can be detected in the urine of NPYR-treated rats, the results suggest that it is a potential candidate as a biomarker for assessing human exposure to and metabolic activation of NPYR.
Resumo:
P>Typing methods to evaluate isolates in relation to their phenotypical and molecular characteristics are essential in epidemiological studies. In this study, Candida albicans biotypes were determined before and after storage in order to verify their stability. Twenty C. albicans isolates were typed by Randomly Amplified Polymorphic DNA (RAPD), production of phospholipase and proteinase exoenzymes (enzymotyping) and morphotyping before and after 180 days of storage in Sabouraud dextrose agar (SDA) and sterilised distilled water. Before the storage, 19 RAPD patterns, two enzymotypes and eight morphotypes were identified. The fragment patterns obtained by RAPD, on the one hand, were not significantly altered after storage. On the other hand, the majority of the isolates changed their enzymotype and morphotype after storage. RAPD typing provided the better discriminatory index (DI) among isolates (DI = 0.995) and maintained the profile identified, thereby confirming its utility in epidemiological surveys. Based on the low reproducibility observed after storage in SDA and distilled water by morphotyping (DI = 0.853) and enzymotyping (DI = 0.521), the use of these techniques is not recommended on stored isolates.
Resumo:
DNA-hsp65, a DNA vaccine encoding the 65-kDa heat-shock protein of Mycobacterium leprae (Hsp65) is capable of inducing the reduction of established tumors in mouse models. We conducted a phase I clinical trial of DNA-hsp65 in patients with advanced head and neck carcinoma. In this article, we report on the vaccine`s potential to induce immune responses to Hsp65 and to its human homologue, Hsp60, in these patients. Twenty-one patients with unresectable squamous cell carcinoma of the head and neck received three doses of 150, 400 or 600 mu g naked DNA-hsp65 plasmid by ultrasound-guided intratumoral injection. Vaccination did not increase levels of circulating anti-hsp65 IgG or IgM antibody, or lead to detectable Hsp65-specific cell proliferation or interferon-gamma (IFN-gamma) production by blood mononuclear cells. Frequency of antigen-induced IL-10-producing cells increased after vaccination in 4 of 13 patients analyzed. Five patients showed disease stability or regression following immunization; however, we were unable to detect significant differences between these patients and those with disease progression using these parameters. There was also no increase in antibody or IFN-gamma responses to human Hsp60 in these patients. Our results suggest that although DNA-hsp65 was able to induce some degree of immunostimulation with no evidence of pathological autoimmunity, we were unable to differentiate between patients with different clinical outcomes based on the parameters measured. Future studies should focus on characterizing more reliable correlations between immune response parameters and clinical outcome that may be used as predictors of vaccine success in immunosuppressed individuals. Cancer Gene Therapy (2009) 16, 598-608; doi:10.1038/cgt.2009.9; published online 6 February 2009
Resumo:
BACKGROUND: Chagas` disease reactivation (CDR) after heart transplantation is characterized by relapse of the infectious disease, with direct detection of Trypanosoma cruzi parasites in blood, cerebrospinal fluid, or tissues. CDR affecting the myocardium induces lymphocytic myocarditis and should be distinguished from acute cellular rejection in endomyocardial biopsy (EMB) specimens. METHODS: We performed retrospectively qualitative polymerase chain reaction for T cruzi DNA using 2 sets of primers targeting nuclear DNA (nDNA) or kinetoplast DNA (kDNA) in 61 EMB specimens of 11 chagasic heart transplant recipients who presented with CDR. Thirty-five EMB specimens were obtained up to 6 months before (pre-CDR group) and 26 up to 2 years after the diagnosis of CDR. The control group consisted of 6 chagasic heart transplant recipients with 18 EMB specimens who never experienced CDR. RESULTS: Amplification of kDNA occurred in 8 of 35 (22.9%) EMB specimens of the pre-CDR group, in 5 of 18(27.8%) of the control group, and in 17 of 26(65.4%) EMB specimens obtained after the successful treatment of CDR. Amplification of nDNA occurred in 3 of 35 (8.6%) EMB specimens of the pre-CDR group, 0 of 18 (0%) of the control group, and 6 of 26 (23.1%) EMB specimens obtained after the successful treatment of CDR. CONCLUSIONS: Amplification of kDNA in EMB specimens is not specific for the diagnosis of CDR, occurring also in patients with no evidence of CDR (control group). However, amplification of nDNA occurred in a few EMB specimens obtained before CDR, but in none of the control group specimens. Qualitative PCR for T cruzi DNA in EMB specimens should not be used as a criterion for cure of CDR because it can persist positive despite favorable clinical evolution of the patients. J Heart Lung Transplant 2011;30:799-804 (C) 2011 International Society for Heart and Lung Transplantation. All rights reserved.