17 resultados para Molecular spectra.
Resumo:
Structural, energetic, and vibrational properties of new molecular species, HSeF and HFSe, the associated transition state, and dissociation fragments are investigated using a state-of-the-art theoretical approach, CCSD(T)/CBS. HSeF is a normal covalently bonded molecule 38.98 kcal mol (1) more stable than the complex HF-Se, which shows an unusual structure with a central fluorine atom and a bond angle of 101.8 degrees.A barrier (Delta G(#)) of 49.01 kcal mol (1) separates the two species. Vibrational frequencies are also quite distinct. Heats of formation are evaluated for the diatomic fragments and HSeF. Final Delta(f)H values depend on the experimental accuracy of those of Se(g) and H(2)Se. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
A high level theoretical approach is used to characterize for the first time a manifold of doublet and quartet A + S and Omega states correlating with the first two dissociation channels of an as yet experimentally unknown molecular species, SI, sulfur monoidide. A set of spectroscopic constants is determined, including vibrationally averaged spin-orbit coupling constants, vibrationally averaged dipole moments, and dissociation energies. The transition dipole moment function for the spin-forbidden transition a (4)Sigma -X (2)Pi, and the associated radiative lifetimes were also evaluated. Two possibilities to detect transitions experimentally and to derive spectroscopic constants are suggested. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
We report the first simultaneous zJHK spectroscopy on the archetypical Seyfert 2 galaxy NGC 1068 covering the wavelength region 0.9-2.4 mu m. The slit, aligned in the north-south direction and centred in the optical nucleus, maps a region 300 pc in radius at subarcsec resolution, with a spectral resolving power of 360 km s-1. This configuration allows us to study the physical properties of the nuclear gas including that of the north side of the ionization cone, map the strong excess of continuum emission in the K band and attributed to dust and study the variations, both in flux and profile, in the emission lines. Our results show the following. (1) Mid- to low-ionization emission lines are split into two components, whose relative strengths vary with the position along the slit and seem to be correlated with the jet. (2) The coronal lines are single-peaked and are detected only in the central few hundred of pc from the nucleus. (3) The absorption lines indicate the presence of intermediate age stellar population, which might be a significant contributor to the continuum in the near-IR spectra. (4) Through some simple photoionization models we find photoionization as the main mechanism powering the emitting gas. (5) Calculations using stellar features point to a mass concentration inside the 100-200 pc of about 1010 M(circle dot).
Resumo:
We performed stellar population synthesis on the nuclear and extended regions of NGC 1068 by means of near-infrared spectroscopy to disentangle their spectral energy distribution components. This is the first time that such a technique is applied to the whole 0.8-2.4 mu m wavelength interval in this galaxy. NGC 1068 is one of the nearest and probably the most studied Seyfert 2 galaxy, becoming an excellent laboratory to study the interaction between black holes, the jets that they can produce and the medium in which they propagate. Our main result is that traces of young stellar population are found at similar to 100 pc south of the nucleus. The contribution of a power-law continuum in the centre is about 25 per cent, which is expected if the light is scattered from a Seyfert 1 nucleus. We find peaks in the contribution of the featureless continuum about 100-150 pc from the nucleus on both sides. They might be associated with regions where the jet encounters dense clouds. Further support to this scenario is given by the peaks of hot dust distribution found around these same regions and the H(2) emission-line profile, leading us to propose that the peaks might be associated to regions where stars are being formed. Hot dust also has an important contribution to the nuclear region, reinforcing the idea of the presence of a dense, circumnuclear torus in this galaxy. Cold dust appears mostly in the south direction, which supports the view that the south-west emission is behind the plane of the galaxy and is extinguished very likely by dust in the plane. Intermediate-age stellar population contributes significantly to the continuum, especially in the inner 200 pc.
Resumo:
K-band spectra of young stellar candidates in four Southern hemisphere clusters have been obtained with the Gemini Near-Infrared Spectrograph in Gemini South. The clusters are associated with IRAS sources that have colours characteristic of ultracompact H II regions. Spectral types were obtained by comparison of the observed spectra with those of a near-infrared (NIR) library; the results include the spectral classification of nine massive stars and seven objects confirmed as background late-type stars. Two of the studied sources have K-band spectra compatible with those characteristic of very hot stars, as inferred from the presence of C IV, N III and N V emission lines at 2.078, 2.116 and 2.100 mu m, respectively. One of them, I16177_IRS1, has a K-band spectrum similar to that of Cyg OB2 7, an O3If* supergiant star. The nebular K-band spectrum of the associated Ultra-Compact (UC) H II region shows the s-process [Kr III] and [Se IV] high excitation emission lines, previously identified only in planetary nebula. One young stellar object was found in each cluster, associated with either the main IRAS source or a nearby resolved Midecourse Space eXperiment (MSX) component, confirming the results obtained from previous NIR photometric surveys. The distances to the stars were derived from their spectral types and previously determined JHK magnitudes; they agree well with the values obtained from the kinematic method, except in the case of IRAS 15408-5356, for which the spectroscopic distance is about a factor of 2 smaller than the kinematic value.
Resumo:
Using the QCD sum rules we test if the charmonium-like structure Y(4274), observed in the J/psi phi invariant mass spectrum, can be described with a D(s)(D) over bar (s0)(2317)+ h.c. molecular current with J(PC) = 0(-+). We consider the contributions of condensates up to dimension ten and we work at leading order in alpha(s). We keep terms which are linear in the strange quark mass m(s). The mass obtained for such state is mD(s)D(s0) = (4.78 +/- 0.54) GeV. We also consider a molecular 0(-+) D (D) over bar (0)(2400)+ h.c. current and we obtain m(DD0) = (4.55 +/- 0.49) GeV. Our study shows that the newly observed Y(4274) in the J/psi phi invariant mass spectrum can be, considering the uncertainties, described using a molecular charmonium current. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This work demonstrates that the detuning of the fs-laser spectrum from the two-photon absorption band of organic materials can be used to reach further control of the two-photon absorption by pulse spectral phase manipulation. We investigate the coherent control of the two-photon absorption in imidazole-thiophene core compounds presenting distinct two-photon absorption spectra. The coherent control, performed using pulse phase shaping and genetic algorithm, exhibited different growth rates for each sample. Such distinct trends were explained by calculating the two-photon absorption probability considering the intrapulse interference mechanism, taking into account the two-photon absorption spectrum of the samples. Our results indicate that tuning the relative position between the nonlinear absorption and the pulse spectrum can be used as a novel strategy to optimize the two-photon absorption in broadband molecular systems. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This article presents an investigation of the temperature induced modification in the microstructure and dynamics of poly[2-methoxy-5-(2`-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) cast films using Wide-Angle X-ray Scattering (WAXS), solid-state Nuclear Magnetic Resonance (NMR), and Fluorescence Spectroscopy (PL). MEH-PPV chain motions were characterized as a function of temperature by NMR. The results indicated that the solvent used to cast the films influences the activation energy of the side-chain motions. This was concluded from the comparison of the activation energy of the toluene cast film, E(a) = (54 +/- 8) kJ/mol, and chloroform cast film, E(a) = (69 +/- 5) kJ/mol, and could be attributed to the higher side-chain packing provided by chloroform, that preferentially solvates the side chain in contrast to toluene that solvates mainly the backbone. Concerning the backbone mobility, it was observed that the torsional motions in the MEH-PPV have average amplitude of similar to 10 degrees at 300 K, which was found to be independent of the solvent used to cast the films. In order to correlate the molecular dynamics processes with the changes in the microstructure of the polymer, in situ WAXS experiments as a function of temperature were performed and revealed that the interchain spacing in the MEH-PPV molecular aggregates increases as a function of temperature, particularly at temperatures where molecular relaxations occur. It was also observed that the WAXS peak associated with the bilayer spacing becomes narrower and its intensity increases whereas the peak associated with the inter-backbone planes reduces its intensity for higher temperatures. This last result Could be interpreted as a decrease in the number of aggregates and the reduction of the interchain species during the MEH-PPV relaxation processes. These WAXS results were correlated with PL spectra modifications observed upon temperature treatments. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
3`-Azido-3`-deoxythymidine (zidovudine, AZT), a synthetic analog of natural nucleoside thymidine, has been used extensively in AIDS treatments. We report here the synthesis. X-ray crystal and molecular structure, NMR, IR and Raman spectra and the thermal behavior of a novel carbonate of AZT [(AZT-O)(2)C=O], prepared by the reaction of zidovudine with carbonyldiimidazole. The carbonate compound, C(21)H(24)N(10)O(9), crystallizes in the tetragonal space group P4(1)2(1)2 with a = b = 15.284(1), c = 21.695(1) angstrom, and Z = 8 molecules per unit cell. It consists of two AZT moieties of closely related conformations which are bridged by a carbonyl group to adopt a folded Z-like shape. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Phthalocyanine compounds have been widely investigated as candidate materials for technological applications, which is mainly due to their thermal stability and possibility of processing in the form of thin films. In most applications, the controlled growth of thin films with high crystalline quality is essential. In this study, zinc phthalocyanine (ZnPc) thin films were prepared by evaporation on glass and Au-coated glass substrates with subsequent annealing at different temperatures in ambient atmosphere. The morphological and structural features of 80 nm thick zinc phthalocyanine films were investigated, evidencing an alpha -> beta phase transformation after annealing the films at 200 A degrees C, as indicated by UV-Vis spectroscopy and FTIR analyses. A better uniformity of the annealed films was also evidenced via AFM analysis, which may be of importance for applications where film homogeneity and excellent optical quality are required.
Resumo:
In this study, the molecular structure and conformational analyses of the 4-isopropylthioxanthone (4-ITX) are reported according to experimental and theoretical results. The compound crystallizes in the centrosymmetric P (1) over bar space group with only one molecule in the asymmetric unit, presenting the most stable conformation, in which the three fused-rings adopt a planar geometry, and the isopropyl group assumes a torsional angle with less sterical hindrance. The structural and conformational analyses were performed using theoretical calculations such as Hartree-Fock (HF), DFT method in combination with 6-311G(d,p) and 6-31++G(d,p) and the results were compared with infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The supramolecular assembly of 4-ITX is kept by non-classical C-H center dot center dot center dot O hydrogen bonds and weak interactions such as pi-pi stacking. 4-ITX was also studied by (1)H and (13)C NMR spectroscopy. UV-Vis absorption spectroscopic properties of the 4-ITX showed the long-wavelength maximum shifts towards high energy when the solvent polarity increases. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This work describes the covalent grafting of 3,4,9,10-perylenediimides (PDI), which are fluorescent dyes with very interesting optical properties, onto the walls of mesoporous molecular sieves MCM-41 and SBA-15. The mesoporous materials were first treated with 3-aminopropyltriethoxysilane (APTES) in anhydrous toluene, generating amine-containing surfaces. The amine-containing materials were then reacted with 3,4,9,10-perylenetetracarboxylic dianhydride (PTCA), generating surface-grafted PDI. Infrared spectra of the materials showed that the reaction with amino groups took place at both anhydride ends of the PTCA molecule, resulting in surface attached diimides. No sign of unreacted anhydride groups were found. The new materials, designated as MCMN2PDI and SBAN(2)PDI, presented absorption and emission spectra corresponding to weakly coupled PDI chromophores, in contrast to the strongly coupled rings usually found in solid PDI samples. The materials showed a red fluorescence, which could be observed by the naked eye under UV irradiation or with a fluorescence microscope. The PDI-modified mesoporous materials showed electrical conductivity when pressed into a pellet. The results presented here show that the new materials are potentially useful in the design of nanowires. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Cholesterol oxidation gives rise to a mixture of oxidized products. Different types of products are generated according to the reactive species being involved. Recently, attention has been focused on two cholesterol aldehydes, 3 beta-hydroxy-5 beta-hydroxy-B-norcholestane-6 beta-carboxyaldehyde (1a) and 3 beta-hydroxy-5-oxo-5,6-secocholestan-6-al (1b). These aldehydes can be generated by ozone-, as well as by singlet molecular oxygen-mediated cholesterol oxidation. It has been suggested that 1b is preferentially formed by ozone and la is preferentially formed by singlet molecular oxygen. In this study we describe the use of 1-pyrenebutyric hydrazine (PBH) as a fluorescent probe for the detection of cholesterol aldehydes. The formation of the fluorescent adduct between la with PBH was confirmed by HPLC-MS/MS. The fluorescence spectra of PBH did not change upon binding to the aldehyde. Moreover, the derivatization was also effective in the absence of an acidified medium, which is critical to avoid the formation of cholesterol aldehydes through Hock cleavage of 5 alpha-hydroperoxycholesterol. In conclusion, PBH can be used as an efficient fluorescent probe for the detection/quantification of cholesterol aldehydes in biological samples. Its analysis by HPLC coupled to a fluorescent detector provides a sensitive and specific way to quantify cholesterol aldehydes in the low femtomol range.
Resumo:
Structural, vibrational, and energetic properties of new molecular species, HSI and HIS are investigated for the first time using a state-of-the-art theoretical approach. These molecules can be easily differentiated by their geometric parameters and vibrational spectra. HSI is much more stable, and a direct unimolecular isomerization is very unlikely. Kinetics estimates predict that only at low temperatures there is a possibility of isolating HIS. For HS-I, we estimate a bond dissociation energy of 46.25 kcal/mol, and a heat of formation at 298.15 K of 12.84 kcal/mol. For the H(2)S + I(2) -> HSI + HI reaction enthalpy, we found 8.40 kcal/ mol. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Raman spectra of polymer electrolytes based on poly(ethylene glycol) dimethyl ether (PEGdME) with LiClO(4), PEGdME/LiClO(4), and the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, PEGdME/[bmim]PF(6), are compared. Raman spectroscopy suggests stronger interactions in PEGdME/LiClO(4) than PEGdmE/[bmim]PF(6), thus corroborating previous results obtained by molecular dynamics simulations. Quantum Chemistry methods have been used to calculate vibrational frequencies and the equilibrium structure of segments of the polymer chain around the cation. A consistent picture has been obtained from Raman spectroscopy, density functional theory (DFT) calculations, and molecular dynamics simulations for these polymer electrolytes. (C) 2010 Elsevier B.V. All rights reserved.