97 resultados para Intracortical Inhibition
Resumo:
We assessed for the first time the long-term maintenance of repetitive transcranial magnetic stimulation (rTMS)-induced analgesia in patients with chronic widespread pain due to fibromyalgia. Forty consecutive patients were randomly assigned, in a double-blind fashion, to 2 groups: one receiving active rTMS (n = 20) and the other, sham stimulation (n = 20), applied to the left primary motor cortex. The stimulation protocol consisted of 14 sessions: an ""induction phase"" of 5 daily sessions followed by a ""maintenance phase"" of 3 sessions a week apart, 3 sessions a fortnight apart, and 3 sessions a month apart. The primary outcome was average pain intensity over the last 24 hours, measured before each stimulation from day 1 to week 21 and at week 25 (1 month after the last stimulation). Other outcomes measured included quality of life, mood and anxiety, and several parameters of motor cortical excitability. Thirty patients completed the study (14 in the sham stimulation group and 16 in the active stimulation group). Active rTMS significantly reduced pain intensity from day 5 to week 25. These analgesic effects were associated with a long-term improvement in items related to quality of life (including fatigue, morning tiredness, general activity, walking, and sleep) and were directly correlated with changes in intracortical inhibition. In conclusion, these results suggest that TMS may be a valuable and safe new therapeutic option in patients with fibromyalgia. (C) 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Resumo:
Early after stroke, there is loss of intracortical facilitation (ICF) and increase in short-interval intracortical inhibition (SICI) in the primary motor cortex (M1) contralateral to a cerebellar infarct. Our goal was to investigate intracortical M1 function in the chronic stage following cerebellar infarcts (> 4 months). We measured resting motor threshold (rMT), SICI, ICF, and ratios between motor-evoked potential amplitudes (MEP) and supramaximal M response amplitudes (MEP/M; %), after transcranial magnetic stimulation was applied to the M1 contralateral (M1(contralesional)) and ipsilateral (M1(ipsilesional)) to the cerebellar infarct in patients and to both M1s of healthy age-matched volunteers. SICI was decreased in M1(contralesional) compared to M1(ipsilesional) in the patient group in the absence of side-to-side differences in controls. There were no significant interhemispheric or between-group differences in rMT, ICF, or MEP/M (%). Our results document disinhibition of M1(contralesional) in the chronic phase after cerebellar stroke.
Resumo:
We assessed cortical excitability and intracortical modulation systematically, by transcranial magnetic stimulation (TMS) of the motor cortex, in patients with fibromyalgia. In total 46 female patients with fibromyalgia and 21 normal female subjects, matched for age, were included in this study. TMS was applied to the hand motor area of both hemispheres and motor evoked potentials (MEPs) were recorded for the first interosseous muscle of the contralateral hand. Single-pulse stimulation was used for measurements of the rest motor threshold (RMT) and suprathreshold MEP. Paired-pulse stimulation was used to assess short intracortical inhibition (SICI) and intracortical facilitation (ICF). Putative correlations were sought between changes in electrophysiological parameters and major clinical features of fibromyalgia, such as pain, fatigue, anxiety, depression and catastrophizing. The RMT on both sides was significantly increased in patients with fibromyalgia and suprathreshold MEP was significantly decreased bilaterally. However, these alterations, suggesting a global decrease in corticospinal excitability, were not correlated with clinical features. Patients with fibromyalgia also had lower ICF and SICI on both sides, than controls, these lower values being correlated with fatigue, catastrophizing and depression. These neurophysiological alterations were not linked to medication, as similar changes were observed in patients with or without psychotropic treatment. In conclusion, fibromyalgia is associated with deficits in intracortical modulation involving both GABAergic and glutamatergic mechanisms, possibly related to certain aspects of the pathophysiology of this chronic pain syndrome. Our data add to the growing body of evidence for objective and quantifiable changes in brain function in fibromyalgia. (C) 2010 International Association for the Study of Pain. Published by Elsevier B. V. All rights reserved.
Resumo:
The role of GABA in the central processing of complex auditory signals is not fully understood. We have studied the involvement of GABA(A)-mediated inhibition in the processing of birdsong, a learned vocal communication signal requiring intact hearing for its development and maintenance. We focused on caudomedial nidopallium (NCM), an area analogous to parts of the mammalian auditory cortex with selective responses to birdsong. We present evidence that GABA(A)-mediated inhibition plays a pronounced role in NCM`s auditory processing of birdsong. Using immunocytochemistry, we show that approximately half of NCM`s neurons are GABAergic. Whole cell patch-clamp recordings in a slice preparation demonstrate that, at rest, spontaneously active GABAergic synapses inhibit excitatory inputs onto NCM neurons via GABA(A) receptors. Multi-electrode electrophysiological recordings in awake birds show that local blockade of GABA(A)-mediated inhibition in NCM markedly affects the temporal pattern of song-evoked responses in NCM without modifications in frequency tuning. Surprisingly, this blockade increases the phasic and largely suppresses the tonic response component, reflecting dynamic relationships of inhibitory networks that could include disinhibition. Thus processing of learned natural communication sounds in songbirds, and possibly other vocal learners, may depend on complex interactions of inhibitory networks.
Resumo:
There remains a lack of solid evidence showing whether transcranial stimulation with weak alternating current (transcranial alternating current stimulation, tACS) can in fact induce significant neurophysiological effects. Previously, a study in which tACS was applied for 2 and 5 min with current density = 0.16-0.25 A/m(2) was unable to show robust effects on cortical excitability. Here we applied tACS at a significantly higher current density (0.80 A/m(2)) for a considerably longer duration (20 min) and were indeed able to demonstrate measurable changes to cortical excitability. Our results show that active 15 Hz tACS of the motor cortex (electrodes placed at C3 and C4) significantly diminished the amplitude of motor evoked potentials and decreased intracortical facilitation (ICF) as compared to baseline and sham stimulation. In addition, we show that our method of sham tACS is a reliable control condition. These results support the notion that AC stimulation with weak currents can induce significant changes in brain excitability; in this case, 15 Hz tACS led to a pattern of inhibition of cortical excitability. We propose that tACS may have a dampening effect on cortical networks and perhaps interfere with the temporal and spatial summation of weak subthreshold electric potentials. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Diabetes in spontaneously hypertensive rats is associated with cortical renal GLUT1 and GLUT2 overexpression. Our objective was to evaluate the effect of the angiotensin-converting enzyme blockade on cortical renal GLUT1 and GLUT2 expression, urinary albumin and urinary TGF-β1. Streptozotocin, 50 mg/kg, or citrate buffer (N = 16) was administered as a single injection into the tail vein in adult spontaneously hypertensive rats (~260 g). Thirty days later, these diabetic spontaneously hypertensive rats received ramipril by gavage: 0.01 mg·kg-1·day-1 (D0.01, N = 14), 1 mg·kg-1·day-1 (D1, N = 9) or water (D, N = 11) for 15 days. Albumin and TGF-β1 (24-h urine), direct arterial pressure, renal tissue angiotensin-converting enzyme activity (fluorometric assay), and GLUT1 and GLUT2 protein levels (Western blot, renal cortex) were determined. Glycemia and glycosuria were higher (P < 0.05) in the diabetic rats compared with controls, but similar between the diabetic groups. Diabetes in spontaneously hypertensive rats lowered renal tissue angiotensin-converting enzyme activity (40%), which was reduced further when higher ramipril doses were used. Diabetes associated with hypertension raised GLUT1 by 28% (P < 0.0001) and GLUT2 by 76% (P = 0.01), and both doses of ramipril equally reduced cortical GLUT1 (D vs D1 and vs D0.01, P ≤ 0.001). GLUT2 levels were reduced in D0.01 (P < 0.05 vs D). Diabetes increased urinary albumin and TGF-β1 urinary excretion, but the 15-day ramipril treatment (with either dose) did not reduce them. In conclusion, ramipril is effective in lowering renal tissue angiotensin-converting enzyme activity, as well as blocking cortical GLUT1 overexpression, which may be beneficial in arresting the development of diabetic nephropathy.
Resumo:
Background: Endoplasmic reticulum (ER) stress has pathophysiological relevance in vascular diseases and merges with proteasome function. Proteasome inhibition induces cell stress and may have therapeutic implications. However, whether proteasome inhibition potentiates ER stress-induced apoptosis and the possible mechanisms involved in this process are unclear. Methodology/Principal Findings: Here we show that proteasome inhibition with MG132, per se at non-lethal levels, sensitized vascular smooth muscle cells to caspase-3 activation and cell death during ER stress induced by tunicamycin (Tn). This effect was accompanied by suppression of both proadaptive (KDEL chaperones) and proapoptotic (CHOP/GADD153) unfolded protein response markers, although, intriguingly, the splicing of XBP1 was markedly enhanced and sustained. In parallel, proteasome inhibition completely prevented ER stress-induced increase in NADPH oxidase activity, as well as increases in Nox4 isoform and protein disulfide isomerase mRNA expression. Increased Akt phosphorylation due to proteasome inhibition partially offset the proapoptotic effect of Tn or MG132. Although proteasome inhibition enhanced oxidative stress, reactive oxygen species scavenging had no net effect on sensitization to Tn or MG132-induced cell death. Conclusion/Relevance: These data indicate unfolded protein response-independent pathways whereby proteasome inhibition sensitizes vascular smooth muscle to ER stress-mediated cell death. This may be relevant to understand the therapeutic potential of such compounds in vascular disease associated with increased neointimal hyperplasia.
Resumo:
Activation of NF-kappa B and 5-lipoxygenase-mediated (5-LO-mediated) biosynthesis of the lipid mediator leukotriene B(4) (LTB(4)) are pivotal components of host defense and inflammatory responses. However, the role of LTB(4) in mediating innate immune responses elicited by specific TLR ligands and cytokines is unknown. Here we have shown that responses dependent on MyD88 (an adaptor protein that mediates signaling through all of the known TLRs, except TLR3, as well as IL-1 beta and IL-18) are reduced in mice lacking either 5-LO or the LTB(4) receptor BTL1, and that macrophages from these mice are impaired in MyD88-dependent activation of NF-kappa B. This macrophage defect was associated with lower basal and inducible expression of MyD88 and reflected impaired activation of STAT1 and overexpression of the STAT1 inhibitor SOCS1. Expression of MyD88 and responsiveness to the TLR4 ligand LPS were decreased by Stat1 siRNA silencing in WT macrophages and restored by Socs1 siRNA in 5-LO-deficient macrophages. These results uncover a pivotal role in macrophages for the GPCR BLT1 in regulating activation of NF-kappa B through Stat1-dependent expression of MyD88.
Molecular determinants of improved cathepsin B inhibition by new cystatins obtained by DNA shuffling
Resumo:
Background: Cystatins are inhibitors of cysteine proteases. The majority are only weak inhibitors of human cathepsin B, which has been associated with cancer, Alzheimer's disease and arthritis. Results: Starting from the sequences of oryzacystatin-1 and canecystatin-1, a shuffling library was designed and a hybrid clone obtained, which presented higher inhibitory activity towards cathepsin B. This clone presented two unanticipated point mutations as well as an N-terminal deletion. Reversing each point mutation independently or both simultaneously abolishes the inhibitory activity towards cathepsin B. Homology modeling together with experimental studies of the reverse mutants revealed the likely molecular determinants of the improved inhibitory activity to be related to decreased protein stability. Conclusion: A combination of experimental approaches including gene shuffling, enzyme assays and reverse mutation allied to molecular modeling has shed light upon the unexpected inhibitory properties of certain cystatin mutants against Cathepsin B. We conclude that mutations disrupting the hydrophobic core of phytocystatins increase the flexibility of the N-terminus, leading to an increase in inhibitory activity. Such mutations need not affect the inhibitory site directly but may be observed distant from it and manifest their effects via an uncoupling of its three components as a result of increased protein flexibility.
Resumo:
Transplantation of pancreatic islets constitutes a promising alternative treatment for type 1 diabetes. However, it is limited by the shortage of organ donors. Previous results from our laboratory have demonstrated beneficial effects of recombinant human prolactin (rhPRL) treatment on beta cell cultures. We therefore investigated the role of rhPRL action in human beta cell survival, focusing on the molecular mechanisms involved in this process. Human pancreatic islets were isolated using an automated method. Islet cultures were pre-treated in the absence or presence of rhPRL and then subjected to serum starvation or cytokine treatment. Beta cells were labelled with Newport green and apoptosis was evaluated using flow cytometry analysis. Levels of BCL2 gene family members were studied by quantitative RT-PCR and western blot. Caspase-8, -9 and -3 activity, as well as nitric oxide production, were evaluated by fluorimetric assays. The proportion of apoptotic beta cells was significantly lowered in the presence of rhPRL under both cell death-induced conditions. We also demonstrated that cytoprotection may involve an increase of BCL2/BAX ratio, as well as inhibition of caspase-8, -9 and -3. Our study provides relevant evidence for a protective effect of lactogens on human beta cell apoptosis. The results also suggest that the improvement of cell survival may involve, at least in part, inhibition of cell death pathways controlled by the BCL2 gene family members. These findings are highly relevant for improvement of the islet isolation procedure and for clinical islet transplantation.
Resumo:
The aim of this study was to assess the effect of leucine supplementation on elements of the ubiquitin proteasome system (UPS) in rat skeletal muscle during immobilization. This effect was evaluated by submitting the animals to a leucine supplementation protocol during hindlimb immobilization, after which different parameters were determined, including: muscle mass; cross-sectional area (CSA); gene expression of E3 ligases/deubiquitinating enzymes; content of ubiquitinated proteins; and rate of protein synthesis. Our results show that leucine supplementation attenuates soleus muscle mass loss driven by immobilization. In addition, the marked decrease in the CSA in soleus muscle type I fibers, but not type II fibers, induced by immobilization was minimized by leucine feeding. Interestingly, leucine supplementation severely minimized the early transient increase in E3 ligase [muscle ring finger 1 (MuRF1) and muscle atrophy F-box (MAFbx)/atrogin-1] gene expression observed during immobilization. The reduced peak of E3 ligase gene expression was paralleled by a decreased content of ubiquitinated proteins during leucine feeding. The protein synthesis rate decreased by immobilization and was not affected by leucine supplementation. Our results strongly suggest that leucine supplementation attenuates muscle wasting induced by immobilization via minimizing gene expression of E3 ligases, which consequently could downregulate UPS-driven protein degradation. It is notable that leucine supplementation does not restore decreased protein synthesis driven by immobilization. Muscle Nerve 41: 800-808, 2010
Resumo:
Protein kinase C beta II (PKC beta II) levels increase in the myocardium of patients with end-stage heart failure (HF). Also targeted overexpression of PKC beta II in the myocardium of mice leads to dilated cardiomyopathy associated with inflammation, fibrosis and myocardial dysfunction. These reports suggest a deleterious role of PKC beta II in HF development. Using a post-myocardial infarction (MI) model of HF in rats, we determined the benefit of chronic inhibition of PKC beta II on the progression of HF over a period of 6 weeks after the onset of symptoms and the cellular basis for these effects. Four weeks after MI, rats with HF signs that were treated for 6 weeks with the PKC beta II selective inhibitor (beta IIV5-3 conjugated to TAT(47-57) carrier peptide) (3 mg/kg/day) showed improved fractional shortening (from 21% to 35%) compared to control (TAT(47-57) carrier peptide alone). Formalin-fixed mid-ventricle tissue sections stained with picrosirius red, haematoxylin and eosin and toluidine blue dyes exhibited a 150% decrease in collagen deposition, a two-fold decrease in inflammation and a 30% reduction in mast cell degranulation, respectively, in rat hearts treated with the selective PKC beta II inhibitor. Further, a 90% decrease in active TGF beta 1 and a significant reduction in SMAD2/3 phosphorylation indicated that the selective inhibition of PKC beta II attenuates cardiac remodelling mediated by the TGF-SMAD signalling pathway. Therefore, sustained selective inhibition of PKC beta II in a post-MI HF rat model improves cardiac function and is associated with inhibition of pathological myocardial remodelling.
Resumo:
Fruit-set in tomato (Solanum lycopersicum) depends on gibberellins and auxins (GAs). Here, we show, using the cv MicroTom, that application of N-1-naphthylphthalamic acid (NPA; an inhibitor of auxin transport) to unpollinated ovaries induced parthenocarpic fruit-set, associated with an increase of indole-3-acetic acid (IAA) content, and that this effect was negated by paclobutrazol (an inhibitor of GA biosynthesis). NPA-induced ovaries contained higher content of GA(1) (an active GA) and transcripts of GA biosynthetic genes (SlCPS, SlGA20ox1, and -2). Interestingly, application of NPA to pollinated ovaries prevented their growth, potentially due to supraoptimal IAA accumulation. Plant decapitation and inhibition of auxin transport by NPA from the apical shoot also induced parthenocarpic fruit growth of unpollinated ovaries. Application of IAA to the severed stump negated the plant decapitation effect, indicating that the apical shoot prevents unpollinated ovary growth through IAA transport. Parthenocarpic fruit growth induced by plant decapitation was associated with high levels of GA(1) and was counteracted by paclobutrazol treatment. Plant decapitation also produced changes in transcript levels of genes encoding enzymes of GA biosynthesis (SlCPS and SlGA20ox1) in the ovary, quite similar to those found in NPA-induced fruits. All these results suggest that auxin can have opposing effects on fruit-set, either inducing (when accumulated in the ovary) or repressing (when transported from the apical shoot) that process, and that GAs act as mediators in both cases. The effect of NPA application and decapitation on fruit-set induction was also observed in MicroTom lines bearing introgressed DWARF and SELF-PRUNING wild-type alleles.
Resumo:
Most researches that have been done until today about the beneficial effects of hariparoha (Pothomorphe umbellata L. Miq) have been done with root extract of this species, but the use in large scale would compromise the sustainable exploration of this natutral resource. In this sense, the utilization of pariparoha leaves, substituting the roots, in the cosmetic industry does not put in risk the existence of the species. In this work the concentration of 4-nerolidyl-cathecol (4-NC) in leaf extract was determined by the analytical methodology validated in our laboratory. The concentration of 4-NC in leaf extract was around 30% less than that of root extract, obtained in the same way. Concerning the study of the photostability of a leaves extract solution containing 4-NC did not demonstrate meaningful alterations in the spectrometry, profile after 2 hours of exposure under UVB radiation, showing its stability under this conditions. Metalloproteinases (MMPs) cure endopeptidases that are zinc-dependent, involved in remodeling extracellular matrix (ECM), that are important in the appearance of typical photoaging wrinkles. In this work the capacity of leaf extract of P. umbellata to inhibit MMP-2 and 9 activities of hairless mouse skin in vitro by zymography gel was also evalutated. The leaf extract (0,1 mg/mL) inhibit in 80% activity of this enzymes, according to the densitometric zymography evaluation.
Resumo:
RECK is an anti-tumoral gene whose activity has been associated with its inhibitory effects regulating MMP-2, MMP-9, and MT1-MMP. RECK level decreases as gliobastoma progresses, varying from less invasive grade II gliomas to very invasive human glioblastoma multiforme (GBM). Since RECK expression and glioma invasiveness show an inverse correlation, the aim of the present study is to investigate whether RECK expression would inhibit glioma invasive behavior. We conducted this study to explore forced RECK expression in the highly invasive T98G human GBM cell line. Expression levels as well as protein levels of RECK, MMP-2, MMP-9, and MT1-MMP were assessed by qPCR and immunoblotting in T98G/RECK+ cells. The invasion and migration capacity of RECK+ cells was inhibited in transwell and wound assays. Dramatic cytoskeleton modifications were observed in the T98G/RECK+ cells, when compared to control cells, such as the abundance of stress fibers (contractile actin-myosin II bundles) and alteration of lamellipodia. T98G/RECK+ cells also displayed phosphorylatecl focal adhesion kinase (P-FAK) in mature focal adhesions associated with stress fibers; whereas P-FAK in control cells was mostly associated with immature focal complexes. Interestingly, the RECK protein was predominantly localized at the leading edge of migrating cells, associated with membrane ruffles. Unexpectedly, introduced expression of RECK effectively inhibited the invasive process through rearrangement of actin filaments, promoting a decrease in migratory ability. This work has associated RECK tumor-suppressing activity with the inhibition of motility and invasion in this GBM model, which are two glioma characteristics responsible for the inefficiency of current available treatments. J. Cell. Biochem. 110: 52-61, 2010. (C) 2010 Wiley-Liss. Inc.