43 resultados para Fermi superfluid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study rf spectroscopy of a lithium gas with the goal to explore the possibilities for photoemission spectroscopy of a strongly interacting p-wave Fermi gas. Radio-frequency spectra of quasibound p-wave molecules and of free atoms in the vicinity of the p-wave Feshbach resonance located at 159.15G are presented. The spectra are free of detrimental final-state effects. The observed relative magnetic-field shifts of the molecular and atomic resonances confirm earlier measurements realized with direct rf association. Furthermore, evidence of molecule production by adiabatically ramping the magnetic field is observed. Finally, we propose the use of a one-dimensional optical lattice to study anisotropic superfluid gaps as most direct proof of p-wave superfluidity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study strongly attractive fermions in an optical lattice superimposed by a trapping potential. We calculate the densities of fermions and condensed bound molecules at zero temperature. There is a competition between dissociated fermions and molecules leading to a reduction of the density of fermions at the trap center. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on experimental studies of the Kondo physics and the development of non-Fermi-liquid scaling in UCu(4+x)Al(8-x) family. We studied 7 different compounds with compositions between x = 0 and 2. We measured electrical transport (down to 65 mK) and thermoelectric power (down to 1.8 K) as a function of temperature, hydrostatic pressure, and/or magnetic field. Compounds with Cu content below x = 1.25 exhibit long-range antiferromagnetic order at low temperatures. Magnetic order is suppressed with increasing Cu content and our data indicate a possible quantum critical point at x(cr) approximate to 1.15. For compounds with higher Cu content, non-Fermi-liquid behavior is observed. Non-Fermi-liquid scaling is inferred from electrical resistivity results for the x = 1.25 and 1.5 compounds. For compounds with even higher Cu content, a sharp kink occurs in the resistivity data at low temperatures, and this may be indicative of another quantum critical point that occurs at higher Cu compositions. For the magnetically ordered compounds, hydrostatic pressure is found to increase the Neel temperature, which can be understood in terms of the Kondo physics. For the non-magnetic compounds, application of a magnetic field promotes a tendency toward Fermi-liquid behavior. Thermoelectric power was analyzed using a two-band Lorentzian model, and the results indicate one fairly narrow band (10 meV and below) and a second broad band (around hundred meV). The results imply that there are two relevant energy scales that need to be considered for the physics in this family of compounds. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of the interlayer coupling on formation of the quantized Hall phase at the filling factor v = 2 was studied in the multilayer GaAs/AlGaAs heterostructures The disorder broaden Gaussian photoluminescence line due to the localized electrons was found in the quantized Hall phase of the isolated multi-quantum well structure On the other hand. the quantized Hall phase of the weakly-coupled multilayers emitted an asymmetrical line similar to that one observed in the metallic electron systems. We demonstrated that the observed asymmetry indicates a formation of the Fermi Surface in the quantized Hall phase of the multilayer electron system due to the interlayer peicolation. A sharp decrease of the single-particle scattering time associated with the extended states oil the Fermi surface was observed at the filling factor v = 2. (C) 2009 Elsevier B.V All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We observe experimentally a deviation of the radius of a Bose-Einstein condensate from the standard Thomas-Fermi prediction, after free expansion, as a function of temperature. A modified Hartree-Fock model is used to explain the observations, mainly based on the influence of the thermal cloud on the condensate cloud.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyze the scanning tunneling microscopy (STM) signatures for the O/Cu(3)Au(100) surface from the low-coverage (isolated impurity) to high-coverage (oxide) regimes. First-principles calculations show that oxygen signatures switch from dark to bright spots as the oxygen coverage increases. This behavior is nicely traced back to a change in the oxygen orbital character of the Fermi-level electronic states. Our results allow for the chemical identification by STM of oxygen and copper atoms in the fully ordered O/Cu(3)Au(100)-c(2x2) surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the solutions of the gap equations of the magnetic-color-flavor-locked (MCFL) phase of paired quark matter in a magnetic field, and taking into consideration the separation between the longitudinal and transverse pressures due to the field-induced breaking of the spatial rotational symmetry, the equation of state of the MCFL phase is self-consistently determined. This result is then used to investigate the possibility of absolute stability, which turns out to require a field-dependent ""bag constant"" to hold. That is, only if the bag constant varies with the magnetic field, there exists a window in the magnetic field vs bag constant plane for absolute stability of strange matter. Implications for stellar models of magnetized (self-bound) strange stars and hybrid (MCFL core) stars are calculated and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. It was proposed earlier that the relativistic ejections observed in microquasars could be produced by violent magnetic reconnection episodes at the inner disk coronal region (de Gouveia Dal Pino & Lazarian 2005). Aims. Here we revisit this model, which employs a standard accretion disk description and fast magnetic reconnection theory, and discuss the role of magnetic reconnection and associated heating and particle acceleration in different jet/disk accretion systems, namely young stellar objects (YSOs), microquasars, and active galactic nuclei (AGNs). Methods. In microquasars and AGNs, violent reconnection episodes between the magnetic field lines of the inner disk region and those that are anchored in the black hole are able to heat the coronal/disk gas and accelerate the plasma to relativistic velocities through a diffusive first-order Fermi-like process within the reconnection site that will produce intermittent relativistic ejections or plasmons. Results. The resulting power-law electron distribution is compatible with the synchrotron radio spectrum observed during the outbursts of these sources. A diagram of the magnetic energy rate released by violent reconnection as a function of the black hole (BH) mass spanning 10(9) orders of magnitude shows that the magnetic reconnection power is more than sufficient to explain the observed radio luminosities of the outbursts from microquasars to low luminous AGNs. In addition, the magnetic reconnection events cause the heating of the coronal gas, which can be conducted back to the disk to enhance its thermal soft X-ray emission as observed during outbursts in microquasars. The decay of the hard X-ray emission right after a radio flare could also be explained in this model due to the escape of relativistic electrons with the evolving jet outburst. In the case of YSOs a similar magnetic configuration can be reached that could possibly produce observed X-ray flares in some sources and provide the heating at the jet launching base, but only if violent magnetic reconnection events occur with episodic, very short-duration accretion rates which are similar to 100-1000 times larger than the typical average accretion rates expected for more evolved (T Tauri) YSOs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamics of a dissipative vibro-impact system called impact-pair is investigated. This system is similar to Fermi-Ulam accelerator model and consists of an oscillating one-dimensional box containing a point mass moving freely between successive inelastic collisions with the rigid walls of the box. In our numerical simulations, we observed multistable regimes, for which the corresponding basins of attraction present a quite complicated structure with smooth boundary. In addition, we characterize the system in a two-dimensional parameter space by using the largest Lyapunov exponents, identifying self-similar periodic sets. Copyright (C) 2009 Silvio L.T. de Souza et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Supersonic flow of a superfluid past a slender impenetrable macroscopic obstacle is studied in the framework of the two-dimensional (2D) defocusing nonlinear Schroumldinger (NLS) equation. This problem is of fundamental importance as a dispersive analog of the corresponding classical gas-dynamics problem. Assuming the oncoming flow speed is sufficiently high, we asymptotically reduce the original boundary-value problem for a steady flow past a slender body to the one-dimensional dispersive piston problem described by the nonstationary NLS equation, in which the role of time is played by the stretched x coordinate and the piston motion curve is defined by the spatial body profile. Two steady oblique spatial dispersive shock waves (DSWs) spreading from the pointed ends of the body are generated in both half planes. These are described analytically by constructing appropriate exact solutions of the Whitham modulation equations for the front DSW and by using a generalized Bohr-Sommerfeld quantization rule for the oblique dark soliton fan in the rear DSW. We propose an extension of the traditional modulation description of DSWs to include the linear ""ship-wave"" pattern forming outside the nonlinear modulation region of the front DSW. Our analytic results are supported by direct 2D unsteady numerical simulations and are relevant to recent experiments on Bose-Einstein condensates freely expanding past obstacles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a comprehensive study of weak-localization and electron-electron interaction effects in a GaAs/InGaAs two-dimensional electron system with nearby InAs quantum dots, using measurements of the electrical conductivity with and without magnetic field. Although both the effects introduce temperature dependent corrections to the zero magnetic field conductivity at low temperatures, the magnetic field dependence of conductivity is dominated by the weak-localization correction. We observed that the electron dephasing scattering rate tau(-1)(phi), obtained from the magnetoconductivity data, is enhanced by introducing quantum dots in the structure, as expected, and obeys a linear dependence on the temperature and elastic mean free path, which is against the Fermi-liquid model. (c) 2008 American Institute of Physics. [DOI: 10.1063/1.2996034]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A relaxation method is employed to study a rotating dense Bose-Einstein condensate beyond the Thomas-Fermi approximation. We use a slave-boson model to describe the strongly interacting condensate and derive a generalized nonlinear Schrodinger equation with a kinetic term for the rotating condensate. In comparison with previous calculations, based on the Thomas-Fermi approximation, significant improvements are found in regions where the condensate in a trap potential is not smooth. The critical angular velocity of the vortex formation is higher than in the Thomas-Fermi prediction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The theory of nonlinear diffraction of intensive light beams propagating through photorefractive media is developed. Diffraction occurs on a reflecting wire embedded in the nonlinear medium at a relatively small angle with respect to the direction of the beam propagation. It is shown that this process is analogous to the generation of waves by a flow of a superfluid past an obstacle. The ""equation of state"" of such a superfluid is determined by the nonlinear properties of the medium. On the basis of this hydrodynamic analogy, the notion of the ""Mach number"" is introduced where the transverse component of the wave vector plays the role of the fluid velocity. It is found that the Mach cone separates two regions of the diffraction pattern: inside the Mach cone oblique dark solitons are generated and outside the Mach cone the region of ""optical ship waves"" (the wave pattern formed by a two-dimensional packet of linear waves) is situated. Analytical theory of the ""optical ship waves"" is developed and two-dimensional dark soliton solutions of the generalized two-dimensional nonlinear Schrodinger equation describing the light beam propagation are found. Stability of dark solitons with respect to their decay into vortices is studied and it is shown that they are stable for large enough values of the Mach number.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a new determination of the parity of the neutral pion via the double Dalitz decay pi(0) -> e(+)e(-)e(+)e(-). Our sample, which consists of 30511 candidate decays, was collected from K(L) -> pi(0)pi(0)pi(0) decays in flight at the KTeV-E799 experiment at Fermi National Accelerator Laboratory. We confirm the negative pi(0) parity and place a limit on scalar contributions to the pi(0) -> e(+)e(-)e(+)e(-) decay amplitude of less than 3.3% assuming CPT conservation. The pi(0)gamma(*)gamma(*) form factor is well described by a momentum-dependent model with a slope parameter fit to the final state phase-space distribution. Additionally, we have measured the branching ratio of this mode to be B(pi(0) -> e(+)e(-)e(+)e(-)) = (3.26 +/- 0.18) x 10(-5).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present precise tests of CP and CPT symmetry based on the full data set of K -> pi pi decays collected by the KTeV experiment at Fermi National Accelerator Laboratory during 1996, 1997, and 1999. This data set contains 16 x 10(6) K -> pi(0)pi(0) and 69 x 10(6) K -> pi(+)pi(-) decays. We measure the direct CP violation parameter Re(epsilon'/epsilon) = (19.2 +/- 2.1) x 10(-4). We find the K(L) -> K(S) mass difference Delta m = (5270 +/- 12) x 10(6) (h) over tilde s(-1) and the K(S) lifetime tau(S) = (89.62 +/- 0.05) x 10(-12) s. We also measure several parameters that test CPT invariance. We find the difference between the phase of the indirect CP violation parameter epsilon and the superweak phase: phi(epsilon) - phi(SW) =(0.40 +/- 0.56)degrees. We measure the difference of the relative phases between the CP violating and CP conserving decay amplitudes for K -> pi(+)pi(-) (phi(+-)) and for K -> pi(0)pi(0) (phi(00)): Delta phi = (0.30 +/- 0.35)degrees. From these phase measurements, we place a limit on the mass difference between K(0) and (K) over bar (0): Delta M < 4.8 x 10(-19) GeV/c(2) at 95% C.L. These results are consistent with those of other experiments, our own earlier measurements, and CPT symmetry.