21 resultados para Epithelial to mesenchymal transition
Resumo:
Aircraft measurements of cloud condensation nuclei (CCN) during the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) were conducted over the Southwestern Amazon region in September-October 2002, to emphasize the dry-to-wet transition season. The CCN concentrations were measured for values within the range 0.1-1.0% of supersaturation. The CCN concentration inside the boundary layer revealed a general decreasing trend during the transition from the end of the dry season to the onset of the wet season. Clean and polluted areas showed large differences. The differences were not so strong at high levels in the troposphere and there was evidence supporting the semi-direct aerosol effect in suppressing convection through the evaporation of clouds by aerosol absorption. The measurements also showed a diurnal cycle following biomass burning activity. Although biomass burning was the most important source of CCN, it was seen as a source of relatively efficient CCN, since the increase was significant only at high supersaturations.
Resumo:
The crystallization of laser glasses in the system (B(2)O(3))(0.6){(Al(2)O(3))(0.4-y)(Y(2)O(3))(y)} (0.1 <= y <= 0.25) doped with different levels of ytterbium oxide has been investigated by X-ray powder diffraction, differential thermal analysis, and various solid-state NMR techniques. The homogeneous glasses undergo major phase segregation processes resulting in crystalline YBO(3), crystalline YAI(3)(BO(3))(4), and residual glassy B(2)O(3) as the major products. This process can be analyzed in a quantitative fashion by solid-state (11)B, (27)Al, and (89)Y NMR spectroscopies as well as (11)B{(27)Al} rotational echo double resonance (REDOR) experiments. The Yb dopants end up in both of the crystalline components, producing increased line widths of the corresponding (11)B, (27)Al, and (89)Y NMR resonances that depend linearly on the Yb/Y substitution ratio. A preliminary analysis of the composition dependence suggests that the Yb(3+) dopant is not perfectly equipartitioned between both crystalline phases, suggesting a moderate preference of Yb to substitute in the crystalline YBO(3) component.
Resumo:
Nonsyndromic cleft lip and palate (NSCL/P) is a complex disease resulting from failure of fusion of facial primordia, a complex developmental process that includes the epithelial-mesenchymal transition (EMT). Detection of differential gene transcription between NSCL/P patients and control individuals offers an interesting alternative for investigating pathways involved in disease manifestation. Here we compared the transcriptome of 6 dental pulp stem cell (DPSC) cultures from NSCL/P patients and 6 controls. Eighty-seven differentially expressed genes (DEGs) were identified. The most significant putative gene network comprised 13 out of 87 DEGs of which 8 encode extracellular proteins: ACAN, COL4A1, COL4A2, GDF15, IGF2, MMP1, MMP3 and PDGFa. Through clustering analyses we also observed that MMP3, ACAN, COL4A1 and COL4A2 exhibit co-regulated expression. Interestingly, it is known that MMP3 cleavages a wide range of extracellular proteins, including the collagens IV, V, IX, X, proteoglycans, fibronectin and laminin. It is also capable of activating other MMPs. Moreover, MMP3 had previously been associated with NSCL/P. The same general pattern was observed in a further sample, confirming involvement of synchronized gene expression patterns which differed between NSCL/P patients and controls. These results show the robustness of our methodology for the detection of differentially expressed genes using the RankProd method. In conclusion, DPSCs from NSCL/P patients exhibit gene expression signatures involving genes associated with mechanisms of extracellular matrix modeling and palate EMT processes which differ from those observed in controls. This comparative approach should lead to a more rapid identification of gene networks predisposing to this complex malformation syndrome than conventional gene mapping technologies.
Resumo:
Introduction. The objective of this study was to show the morphologic characteristics of allograft renal biopsies in renal transplant patients with stable renal function, which can potentially be early markers of allograft dysfunction, after 5 years of follow-up. Methods. Forty-nine renal transplant patients with stable renal function were submitted to renal biopsies and simultaneous measurement of serum creatinine (Cr). Histology was evaluated using Banff scores, determination of interstitial fibrosis by Sirius red staining and immunohistochemical study of proximal tubule and interstitial compartment (using cytokeratin, vimentin, and myofibroblasts as markers). Biopsies were evaluated according to the presence or absence of the epitheliomesenchymal transition (EMT). The interstitial presence of myofibroblasts and tubular presence of vimentin was also analyzed simultaneously. Renal function was measured over the follow-up period to estimate the reduction of graft function. Results. Median posttransplant time at enrollment was 105 days. Patients were followed for 64.3 +/- 8.5 months. The mean Cr at biopsy time was 1.44 +/- 0.33 mg/dL, and after the follow-up it was 1.29 +/- 0.27 mg/dL. Nine patients (19%) had a reduction of their graft function. Eleven biopsies (22%) had tubulointerstitial alterations according to Banff score. Seventeen biopsies (34%) presented EMT. Fifteen biopsies (32%) had high interstitial expression of myofibroblasts and tubular vimentin. Using Cox multivariate analysis, HLA and high expression of interstitial myofibroblasts and tubular vimentin were associated with reduction of graft function, yielding a risk of 3.3 (P = .033) and 9.8 (P = .015), respectively. Conclusion. Fibrogenesis mechanisms occur very early after transplantation and are risk factors for long-term renal function deterioration.
Resumo:
Glypican-3 (GPC3) is a proteoglycan involved in migration, proliferation and cell survival modulation in several tissues. There are many reports demonstrating a downregulation of GPC3 expression in some human tumors, including mesothelioma, ovarian and breast cancer. Previously, we determined that GPC3 reexpression in the murine mammary adenocarcinoma LM3 cells induced an impairment of their in vivo invasive and metastatic capacities together with a higher susceptibility to in vitro apoptosis. Currently, the signaling mechanism of GPC3 is not clear. First, it was speculated that GPC3 regulates the insulin-like growth factor (IGF) signaling system. This hypothesis, however, has been strongly challenged. Recently, several reports indicated that at least in some cell types GPC3 serves as a selective regulator of Wnt signaling. Here we provide new data demonstrating that GPC3 regulates Wnt pathway in the metastatic adenocarcinoma mammary LM3 cell line. We found that GPC3 is able to inhibit canonical Wnt signals involved in cell proliferation and survival, as well as it is able to activate non canonical pathway, which directs cell morphology and migration. This is the first report indicating that breast tumor cell malignant properties can be reverted, at least in part, by GPC3 modulation of Wnt signaling. Our results are consistent with the potential role of GPC3 as a metastasis suppressor.
Resumo:
Titanium dioxide has been extensively used in photocatalysis and dye-sensitized solar cells, where control of the anatase-to-rutile phase transformation may allow the realization of more efficient devices exploiting the synergic effects at anatase/rutile interfaces. Thus, a systematic study showing the proof of concept of a dye-induced morphological transition and an anatase-to-rutile transition based on visible laser (532 nm) and nano/micro patterning of mesoporous anatase (Degussa P25 TiO(2)) films is described for the first time using a confocal Raman microscope. At low laser intensities, only the bleaching of the adsorbed N3 dye was observed. However, high enough temperatures to promote melting/densification processes and create a deep hole at the focus and an extensive phase transformation in the surrounding material were achieved using Is laser pulses of 25-41 mW/cm(2), in resonance with the MLCT band. The dye was shown to play a key role, being responsible for the absorption and efficient conversion of the laser light into heat. As a matter of fact, the dye is photothermally decomposed to amorphous carbon or to gaseous species (CO(x), NO(x), and H(2)O) under a N(2) or O(2) atmosphere, respectively.
Resumo:
The landfall of Cyclone Catarina on the Brazilian coast in March 2004 became known as the first documented hurricane in the South Atlantic Ocean, promoting a new view oil how large-scale features can contribute to tropical transition. The aim of this paper is to put the large-scale circulation associated with Catarina`s transition in climate perspective. This is discussed in the light of a robust pattern of spatial correlations between thermodynamic and dynamic variables of importance for hurricane formation. A discussion on how transition mechanisms respond to the present-day circulation is presented. These associations help in understanding why Catarina was formed in a region previously thought to be hurricane-free. Catarina developed over a large-scale area of thermodynamically favourable air/sea temperature contrast. This aspect explains the paradox that such a rare system developed when the sea surface temperature was slightly below average. But, although thermodynamics played an important role, it is apparent that Catarina would not have formed without the key dynamic interplay triggered by a high latitude blocking. The blocking was associated with an extreme positive phase of the Southern Annular Mode (SAM) both hemispherically and locally, and the nearby area where Catarina developed is found to be more cyclonic during the positive phase of the SAM. A conceptual model is developed and a `South Atlantic index` is introduced as a useful diagnostic of potential conditions leading to tropical transition in the area, where large-scale indices indicate trends towards more favourable atmospheric conditions for tropical cyclone formation. Copyright (c) 2008 Royal Meteorological Society
Resumo:
During the rat submandibular gland (SMG) development, organogenesis and cytodifferentiation depend on the actin cytoskeleton, which is regulated by small Rho GTPases. These proteins link cell surface receptors to pathways that regulate cell motility, polarity, gene expression, vesicular trafficking, proliferation and apoptosis. The aim of this study was to evaluate, by immunohistochemistry, the distribution pattern of RhoA, RhoB, RhoC, Rac1 and Cdc42 during cytodifferentiation of the rat SMG and in male adults. All GTPases were found in epithelial and mesenchymal tissues throughout gland development. Rac1 appeared to be important for parenchyma expansion at the beginning of cytodifferentiation, while RhoC, Cdc42 and the inactive phosphorylated form of Rac1 seemed associated with lumen formation and cell polarization in terminal tubules. RhoA and RhoB labeling was evident throughout development. All GTPases were differentially expressed in the adult gland, suggesting that they play specific roles during differentiation and function of the rat SMG.
Resumo:
The temperature dependence of the crystalline structure and the lattice parameters of Pb1-xLaxZr0.40Ti0.60O3 ferroelectric ceramic system with 0.00 x 0.21 was determined. The samples with x 0.11 show a cubic-to-tetragonal phase transition at the maximum dielectric permittivity, Tmax. Above this amount and especially for the x = 0.12 sample, a spontaneous phase transition from a relaxor ferroelectric state (cubic phase) to a ferroelectric state (tetragonal phase) is observed upon cooling below the Tmax. Unlike what has been reported in other studies, the x = 0.13, 0.14, and 0.15 samples, which present a more pronounced relaxor behavior, also presents a spontaneous normal-to-relaxor transition, indicated by a cubic to tetragonal symmetry below the Tmax. The origin of this anomaly has been associated with an increase in the degree of tetragonality, confirmed by the measurements of the X-ray diffraction patterns. The differential thermal analysis (DSC) measurements also confirm the existence of these phase transitions.
Resumo:
The scavenging processes of chemical species have been previously studied with numerical modeling, in order to understand the gas and particulate matter intra-reservoir transferences. In this study, the atmospheric (RAMS) and scavenging (B.V.2) models were used, in order to simulate sulfate concentrations in rainwater using scavenging processes as well as the local atmospheric conditions obtained within the LBA Project in the State of Rondonia, during a dry-to-wet transition season. Two case studies were conducted. The RAMS atmospheric simulation of these events presented satisfactory results, showing the detailed microphysical processes of clouds in the Amazonian region. On the other hand, with cloud entrainments, observed values have been overestimated. Modeled sulfate rainwater concentration, using exponential decay and cloud heights of 16 km and no entrainments, presented the best results, reaching 97% of the observed value. The results, using shape parameter 5, are the best, improving the overall result. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
It is well known that clocks are present in brain regions other than the suprachiasmatic nucleus and in many peripheral tissues. In the teleost, Danio rerio, peripheral oscillators can be directly synchronized by light. Danio rerio ZEM-2S embryonic cells respond to light with differential growth: cells kept in constant light exhibited a strong inhibition of proliferation, whereas in cells kept in light:dark (LD) cycles (14L:10D and 10L:14D) or in constant darkness (DD), the doubling times were not statistically different. We demonstrated by RT-PCR followed by PCR that ZEM-2S cells express two melanopsins, Opn4x and Opn4m, and the six Cry genes. The presence of the protein OPN4x was demonstrated by immunocytochemistry. The pattern of temporal expression of the genes Opn4x, Per1, Cry1b, and Clock was studied in ZEM-2S cells kept for five days in 12L:12D or DD. In 12L:12D, the clock genes Per 1 and Cry1b exhibited robust circadian expression, while Opn4x and Clock expression seemed to vary in an ultradian pattern. Both Per1 and Cry1b genes had higher expression during the L phase; Clock gene had an increase in expression coincident with the D phase, and during the subjective night. In DD, the temporal variation of Per1 and Cry1b genes was greatly attenuated but not extinguished, and the higher expressions were shifted to the transition times between subjective day and night, demonstrating that Per and Cry1b were synchronized by the LD cycle. Clock and Opn4x kept the ultradian oscillation, but the rhythm was not statistically significant. As endothelins (ET) have been reported to be a potent stimulator of Per genes in rodents, we investigated the effect of endothelin on ZEM-2S cells, which express ETA receptors. Cells were kept in 12D:12L for five days, and then treated with 10-11 to 10-8M ET-1 for 24h. ET-1 exhibited a biphasic effect on Opn4x expression. At 10-11M, the hormone exerted a highly significant stimulation of Opn4x expression during the L phase and introduced a circadian oscillatory pattern. At 10-10M, a significant increase was seen at ZT21 and ZT0 (i.e., at the end of the D phase and beginning of the L phase), whereas 10-9 and 10-8M ET-1 inhibited the expression of Opn4x at most ZTs. Clock expression was unaffected by 10-8M ET-1; however, in the presence of lower concentrations, the expression was enhanced at some ZTs, strengthening the ultradian oscillation. ET-1 at 10-11 and 10-10M had no effect on Per1 circadian expression; however, 10-9 and 10-8M ET-1 reduced the amplitude of Per1 expression in the beginning of the L phase. ET-1 effects were less evident on Cry 1b. For both genes, the reduction in expression was not sufficient to abolish the circadian oscillatory pattern. Based on these results and data in the literature, a link between ET-1 stimulation of ETA receptors may be established by E4BP4 binding to the promoters and consequent inhibition of gene expression.
Resumo:
Context: Iodide transport defect (ITD) is an autosomal recessive disorder caused by impaired Na(+)/I(-) symporter (NIS)-mediated active iodide accumulation into thyroid follicular cells. Clinical manifestations comprise a variable degree of congenital hypothyroidism and goiter, and low to absent radioiodide uptake, as determined by thyroid scintigraphy. Hereditary molecular defects in NIS have been shown to cause ITD. Objective: Our objective was to perform molecular studies on NIS in a patient with congenital hypothyroidism presenting a clinical ITD phenotype. Design: The genomic DNA encoding NIS was sequenced, and an in vitro functional study of a newly identified NIS mutation was performed. Results: The analysis revealed the presence of an undescribed homozygous C to T transition at nucleotide -54 (-54C>T) located in the 5`-untranslated region in the NIS sequence. Functional studies in vitro demonstrated that the mutation was associated with a substantial decrease in iodide uptake when transfected into Cos-7 cells. The mutation severely impaired NIS protein expression, although NIS mRNA levels remained similar to those in cells transfected with wild-type NIS, suggesting a translational deficiency elicited by the mutation. Polysome profile analysis demonstrated reduced levels of polyribosomes-associated mutant NIS mRNA, consistent with reduced translation efficiency. Conclusions: We described a novel mutation in the 5`-untranslated region of the NIS gene in a newborn with congenital hypothyroidism bearing a clinical ITD phenotype. Functional evaluation of the molecular mechanism responsible for impaired NIS-mediated iodide concentration in thyroid cells indicated that the identified mutation reduces NIS translation efficiency with a subsequent decrease in protein expression and function. (J Clin Endocrinol Metab 96: E1100-E1107, 2011)
Resumo:
Paracoccidioides brasiliensis is a thermo-dimorphic fungus that is the causative agent of paracoccidioidomyicosis (PCM), a human systemic granulomatous mycosis found in Latin America. Dimorphic transition from mycelium to yeast is required for establishing pathogenicity. Dimorphism is marked by changes in mitochondrial physiology, including modulation of respiration rate. In this work, we present the identification of three P. brasiliensis nuclear genes PbCOX9, PbCOX12, and PbCOX16 that code for structural sub-units and a putative assembly facilitator (PbCOX16) of the mitochondrial cytochrome c oxidase (COX), the terminal enzyme complex of the respiratory chain. We measured their expression pattern during the dimorphic transition from mycelium to yeast and back by real-time reverse transcription quantitative polymerase chain reaction (real-time RT-qPCR). Our results show that messages from these genes increase during the mycelium to yeast transition and decrease during the opposite conversion. This result supports active mitochondrial participation in the transition. Heterologous complementation of the corresponding Saccharomyces cerevisiae null mutant with the PbCOX9 gene was successfully obtained. (C) 2008 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
The mechanisms of nucleation and growth and the solid-to-liquid transition of metallic nanoclusters embedded in sodium borate glass were recently studied in situ via small-angle X-ray scattering (SAXS) and wide-an-le X-ray scattering (WAXS). SAXS results indicate that, under isothermal annealing conditions, the formation and growth of Bi or Ag nanoclusters embedded in sodium borate glass occurs through two successive stages after a short incubation period. The first stage is characterized by the nucleation and growth of spherical metal clusters promoted by the diffusion of Bi or Ag atoms through the initially supersaturated glass phase. The second stage is named the coarsening stage and occurs when the (Bi- or Ag-) doping level of the vitreous matrix is close to the equilibrium value. The experimental results demonstrated that, at advanced stages of the growth process, the time dependence of the average radius and density number of the clusters is in agreement with the classical Lifshitz-Slyozov-Waoner (LSW) theory. However, the radius distribution function is better described by a lognormal function than by the function derived from the theoretical LSW model. From the results of SAXS measurements at different temperatures, the activation energies for the diffusion of Ag and Bi through sodium borate glass were determined. In addition, via combination of the results of simultaneous WAXS and SAXS measurements at different temperatures, the crystallographic structure and the dependence of melting temperature T(m) on crystal radius R of Bi nanocrystals were established. The experimental results indicate that T(m) is a linear and decreasing function of nanocrystal reciprocal radius 1/R, in agreement with the Couchman and Jesser theoretical model. Finally, a weak contraction in the lattice parameters of Bi nanocrystals with respect to bulk crystals was established.
Resumo:
We investigate the critical behavior of a stochastic lattice model describing a predator-prey system. By means of Monte Carlo procedure we simulate the model defined on a regular square lattice and determine the threshold of species coexistence, that is, the critical phase boundaries related to the transition between an active state, where both species coexist and an absorbing state where one of the species is extinct. A finite size scaling analysis is employed to determine the order parameter, order parameter fluctuations, correlation length and the critical exponents. Our numerical results for the critical exponents agree with those of the directed percolation universality class. We also check the validity of the hyperscaling relation and present the data collapse curves.