223 resultados para Dual-Processs Systems
Resumo:
We study the existence of positive solutions of Hamiltonian-type systems of second-order elliptic PDE in the whole space. The systems depend on a small parameter and involve a potential having a global well structure. We use dual variational methods, a mountain-pass type approach and Fourier analysis to prove positive solutions exist for sufficiently small values of the parameter.
Resumo:
We study the electronic transport properties of a dual-gated bilayer graphene nanodevice via first-principles calculations. We investigate the electric current as a function of gate length and temperature. Under the action of an external electrical field we show that even for gate lengths up 100 angstrom, a nonzero current is exhibited. The results can be explained by the presence of a tunneling regime due the remanescent states in the gap. We also discuss the conditions to reach the charge neutrality point in a system free of defects and extrinsic carrier doping.
Resumo:
A new approach for the integration of dual contactless conductivity and amperometric detection with an electrophoresis microchip system is presented. The PDMS layer with the embedded channels was reversibly sealed to a thin glass substrate (400 mu m), on top of which a palladium electrode had been previously fabricated enabling end-channel amperometric detection. The thin glass substrate served also as a physical wall between the separation channel and the sensing copper electrodes for contactless conductivity detection. The latter were not integrated in the microfluidic device, but fabricated on an independent plastic substrate allowing a simpler and more cost-effective fabrication of the chip. PDMS/glass chips with merely contactless conductivity detection were first characterized in terms of sensitivity, efficiency and reproducibility. The separation efficiency of this system was found to be similar or slightly superior to other systems reported in the literature. The simultaneous determination of ionic and electroactive species was illustrated by the separation of peroxynitrite degradation products, i.e. NO(3)(-) (non-electroactive) and NO(2)(-) (electroactive), using hybrid PDMS/glass chips with dual contactless conductivity and amperometric detection. While both ions were detected by contactless conductivity detection with good efficiency, NO(2)(-) was also simultaneously detected amperometrically with a significant enhancement in sensitivity compared to contactless conductivity detection.
Resumo:
The performance assessment as to water consumption in WC cisterns has contributed to the development of flushing system technologies, which allow smaller flushing volumes. The purpose of this work is to assess the performance of the the low water consumption requirement of WC cisterns with dual flushing system (6/3L), when compared to 6L flushing volume WC cisterns in multifamily buildings. The research methodology consisted of a case study in a multifamily residential building with submetering system, by monitoring the total water consumption and the two flushing systems using water meters installed in WC cisterns. By means of a mathematical model, a comparison of the design flowrate in the main branch was carried out considering the two types of WC cisterns. The results indicated that the water consumption in the 6L WC cistern was 20% in relation to the total domestic consumption, whereas the water consumption observed in the dual-flush WC cistern (6/3L) was 16%. The dual flushing system (6/3L) presented about 18% consumption reduction impact as compared to the 6 L system. The design flowrate values in the main branch, obtained by the mathematical model, were 0.35 L/s for systems with 6 L WC cistern and 0.34 L/s with dual-flush WC cistern (6/3 L), that is, a reduction of similar to 3%. Practical application: The knowledge of the performance in field of dual-flush WC cistern contributes to industry to improve this system and to users to aid their choice of technologies aimed at water conservation, and so assisting to the development of sustainable buildings.
Resumo:
Objectives. The purpose of this study was to evaluate how curing protocol affects the extent of polymerization of dual-cured resin cements. Methods. Four commercial resin cements were used (DuoLink, Panavia F 2.0, Variolink II and Enforce). The extent of polymerization of the resin cements cured under different conditions was measured using a (1)H Stray-Field MRI method, which also enabled to probe molecular mobility in the kHz frequency range. Results. Resin cements show well distinct behaviours concerning chemical cure. Immediate photo-activation appears to be the best choice for higher filler loaded resin cements (Panavia F 2.0 and Variolink). A photo-activation delay (5 min) did not induce any significant difference in the extent of polymerization of all cements. Significance. The extent of polymerization of dual-cured resin cements considerably changed among products under various curing protocols. Clinicians should optimize the materials choice taking into account the curing characteristics of the cements. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
The Epiphany (TM) Sealer is a new dual-curing resin-based sealer and has been introduced as an alternative to gutta-percha and traditional root canal sealers. The canal filling is claimed to create a seal with the dentinal tubules within the root canal system producing a `monoblock` effect between the sealer and dentinal tubules. Therefore, considering the possibility to incorporate the others adhesive systems, it is important to study the bond strength of the resulting cement. Forty-eight root mandibular canines were sectioned 8-mm below CEJ. The dentine discs were prepared using a tapered diamond bur and irrigated with 1% NaOCl and 17% EDTA. Previous the application Epiphany (TM) Sealer, the Epiphany (TM) Primer, AdheSE, and One Up Bond F were applied to the root canal walls. The LED and QTH (Quartz Tungsten Halogen) were used to photo-activation during 45 s with power density of 400 and 720 mW/cm(2), respectively. The specimens were performed on a universal testing machine at a cross-head speed of 1 mm/min until bond failure occurred. The force was recorded and the debonding values were used to calculate Push-out bond strength. The analysis of variance (ANOVA) and Tukey`s post-hoc tests showed significant statistical differences (P < 0.05) to Epiphany (TM) Sealer/Epiphany (TM) Primer/QTH and EpiphanyTM Sealer/AdheSE/QTH, which had the highest mean values of bond strength. The efficiency of resin-based filling materials are dependent the type of light curing unit used including the power density, the polymerization characteristics of these resin-based filling materials, depending on the primer/adhesive used.
Resumo:
Relevant results for (sub-)distribution functions related to parallel systems are discussed. The reverse hazard rate is defined using the product integral. Consequently, the restriction of absolute continuity for the involved distributions can be relaxed. The only restriction is that the sets of discontinuity points of the parallel distributions have to be disjointed. Nonparametric Bayesian estimators of all survival (sub-)distribution functions are derived. Dual to the series systems that use minimum life times as observations, the parallel systems record the maximum life times. Dirichlet multivariate processes forming a class of prior distributions are considered for the nonparametric Bayesian estimation of the component distribution functions, and the system reliability. For illustration, two striking numerical examples are presented.
Resumo:
This in vitro study evaluated the tensile bond strength of glass fiber posts (Reforpost - Angelus-Brazil) cemented to root dentin with a resin cement (RelyX ARC - 3M/ESPE) associated with two different adhesive systems (Adper Single Bond - 3M/ESPE and Adper Scotchbond Multi Purpose (MP) Plus - 3M/ESPE), using the pull-out test. Twenty single-rooted human teeth with standardized root canals were randomly assigned to 2 groups (n=10): G1- etching with 37% phosphoric acid gel (3M/ESPE) + Adper Single Bond + #1 post (Reforpost - Angelus) + four #1 accessory posts (Reforpin - Angelus) + resin cement; G2- etching with 37% phosphoric acid gel + Adper Scotchbond MP Plus + #1 post + four #1 accessory posts + resin cement. The specimens were stored in distilled water at 37°C for 7 days and submitted to the pull-out test in a universal testing machine (EMIC) at a crosshead speed of 0.5 mm/min. The mean values of bond strength (kgf) and standard deviation were: G1- 29.163 ± 7.123; G2- 37.752 ±13.054. Statistical analysis (Student's t-test; a=0.05 showed no statistically significant difference (p<0.05) between the groups. Adhesive bonding failures between resin cement and root canal dentin surface were observed in both groups, with non-polymerized resin cement in the apical portion of the post space when Single Bond was used (G1). The type of adhesive system employed on the fiber post cementation did not influence the pull-out bond strength.
Resumo:
The purpose of this study was to evaluate the dentin shear bond strength of four adhesive systems (Adper Single Bond 2, Adper Prompt L-Pop, Magic Bond DE and Self Etch Bond) in regards to buccal and lingual surfaces and dentin depth. Forty extracted third molars had roots removed and crowns bisected in the mesiodistal direction. The buccal and lingual surfaces were fixed in a PVC/acrylic resin ring and were divided into buccal and lingual groups assigned to each selected adhesive. The same specimens prepared for the evaluation of superficial dentin shear resistance were used to evaluate the different depths of dentin. The specimens were identified and abraded at depths of 0.5, 1.0, 1.5 and 2.0 mm. Each depth was evaluated by ISO TR 11405 using an EMIC-2000 machine regulated at 0.5 mm/min with a 200 Kgf load cell. We performed statistical analyses on the results (ANOVA, Tukey and Scheffé tests). Data revealed statistical differences (p < 0.01) in the adhesive and depth variation as well as adhesive/depth interactions. The Adper Single Bond 2 demonstrated the highest mean values of shear bond strength. The Prompt L-Pop product, a self-etching adhesive, revealed higher mean values compared with Magic Bond DE and Self Etch Bond adhesives, a total and self-etching adhesive respectively. It may be concluded that the shear bond strength of dentin is dependent on material (adhesive system), substrate depth and adhesive/depth interaction.
Resumo:
This study evaluated the effect of chemical and mechanical surface treatments for cast metal alloys on the bond strength of an indirect composite resin (Artglass) to commercially pure titanium (cpTi). Thirty cylindrical metal rods (3 mm diameter x 60 mm long) were cast in grade-1 cpTi and randomly assigned to 6 groups (n=5) according to the received surface treatment: sandblasting; chemical treatment; mechanical treatment - 0.4 mm beads; mechanical treatment - 0.6 mm beads; chemical/mechanical treatment - 0.4 mm; and chemical/mechanical treatment - 0.6 mm beads. Artglass rings (6.0 mm diameter x 2.0 mm thick) were light cured around the cpTi rods, according manufacturer's specifications. The specimens were invested in hard gypsum and their bond strength (in MPa) to the rods was measured at fracture with a universal testing machine at a crosshead speed of 2.0 mm/min and 500 kgf load cell. Data were analyzed statistically by one-way ANOVA and Tukey test (a=5%). The surface treatments differed significantly from each other (p<0.05) regarding the recorded bond strengths. Chemical retention and sandblasting showed statistically similar results to each other (p=0.139) and both had significantly lower bond strengths (p<0.05) than the other treatments. In conclusion, mechanical retention, either associated or not to chemical treatment, provided higher bond strength of the indirect composite resin to cpTi.
Resumo:
This study evaluated in vitro the shear bond strength (SBS) of a resin-based pit-and-fissure sealant [Fluroshield (F), Dentsply/Caulk] associated with either an etch-and-rinse [Adper Single Bond 2 (SB), 3M/ESPE] or a self-etching adhesive system [Clearfil S3 Bond (S3), Kuraray Co., Ltd.] to saliva-contaminated enamel, comparing two curing protocols: individual light curing of the adhesive system and the sealant or simultaneous curing of both materials. Mesial and distal enamel surfaces from 45 sound third molars were randomly assigned to 6 groups (n=15), according to the bonding technique: I - F was applied to 37% phosphoric acid etched enamel. The other groups were contaminated with fresh human saliva (0.01 mL; 10 s) after acid etching: II - SB and F were light cured separately; III - SB and F were light cured together; IV - S3 and F were light cured separately; V - S3 and F were light cured simultaneously; VI - F was applied to saliva-contaminated, acid-etched enamel without an intermediate bonding agent layer. SBS was tested to failure in a universal testing machine at 0.5 mm/min. Data were analyzed by one-way ANOVA and Fisher's test (α=0.05).The debonded specimens were examined with a stereomicroscope to assess the failure modes. Three representative specimens from each group were observed under scanning electron microscopy for a qualitative analysis. Mean SBS in MPa were: I-12.28 (±4.29); II-8.57 (±3.19); III-7.97 (±2.16); IV-12.56 (±3.11); V-11.45 (±3.77); and VI-7.47 (±1.99). In conclusion, individual or simultaneous curing of the intermediate bonding agent layer and the resin sealant did not seem to affect bond strength to saliva-contaminated enamel. S3/F presented significantly higher SBS than the that of the groups treated with SB etch-and-rinse adhesive system and similar SBS to that of the control group, in which the sealant was applied under ideal dry, noncontaminated conditions.
Resumo:
The aim of the present study was to evaluate the influence of different photopolymerization (halogen, halogen soft-start and LED) systems on shear bond strength (SBS) and marginal microleakage of composite resin restorations. Forty Class V cavities (enamel and dentin margins) were prepared for microleakage assessment, and 160 enamel and dentin fragments were prepared for the SBS test, and divided into 4 groups. Kruskal-Wallis and Wilcoxon tests showed statistically significant difference in microleakage between the margins (p < 0.01) with incisal margins presenting the lowest values. Among the groups, it was observed that, only at the cervical margin, halogen soft-start photo polymerization presented statistically significant higher microleakage values. For SBS test, ANOVA showed no statistical difference (p > 0.05) neither between substrates nor among groups. It was concluded that Soft-Start technique with high intensity end-light influenced negatively the cervical marginal sealing, but the light-curing systems did not influence adhesion.
Resumo:
OBJECTIVE: The aim of this study was to evaluate the morphology of glass (GF), carbon (CF) and glass/carbon (G/CF) fiber posts and their bond strength to self or dual-cured resin luting agents. MATERIAL AND METHODS: Morphological analysis of each post type was conducted under scanning electron microscopy (SEM). Bond strength was evaluated by microtensile test after bisecting the posts and re-bonding the two halves with the luting agents. Data were subjected to two-way ANOVA and Tukey's test (α=0.05). Failure modes were evaluated under optical microscopy and SEM. RESULTS: GF presented wider fibers and higher amount of matrix than CF, and G/CF presented carbon fibers surrounded by glass fibers, and both involved by matrix. For CF and GF, the dual-cured material presented significantly higher (p<0.05) bond strength than the self-cured agent. For the dual agent, CF presented similar bond strength to GF (p>0.05), but higher than that of G/CF (p<0.05). For the self-cured agent, no significant differences (p>0.05) were detected, irrespective of the post type. For GF and G/CF, all failures were considered mixed, while a predominance of adhesive failures was detected for CF. CONCLUSION: The bonding between fiber posts and luting agents was affected by the type of fibers and polymerization mode of the cement. When no surface treatment of the post is performed, the bonding between glass fiber post and dual-cured agent seems to be more reliable.
Resumo:
This study compared the coronal and apical leakage of AH Plus with gutta-percha to that of Epiphany with Resilon. Twenty-four single rooted teeth were instrumented and divided into 2 groups according to the solutions for smear layer removal and the obturation materials employed: Group A - 17% EDTA-T and AH Plus with gutta-percha; Group B - primer and Epiphany with Resilon. The Group B specimens were light-cured in the coronal area for 20 s. The external root surfaces were covered with a double layer of ethyl cyanoacrylate, except for the apical foramen and the cavity access. The teeth were immersed in 0.5% methylene blue for 48 h. The specimens were rinsed, dried and axially split for dye penetration measurement with the ImageLab 2.3 software. The t-test showed no significant differences for coronal leakage between the groups, but there were significant differences for apical leakage between the groups (P < 0.05). AH Plus with gutta-percha and Epiphany with Resilon provided the same coronal seal, whereas Epiphany with Resilon provided the best apical seal.
Resumo:
The purpose of this study was to evaluate the influence of intrapulpal pressure simulation on the bonding effectiveness of etch & rinse and self-etch adhesives to dentin. Eighty sound human molars were distributed into eight groups, according to the permeability level of each sample, measured by an apparatus to assess hydraulic conductance (Lp). Thus, a similar mean permeability was achieved in each group. Three etch & rinse adhesives (Prime & Bond NT - PB, Single Bond -SB, and Excite - EX) and one self-etch system (Clearfil SE Bond - SE) were employed, varying the presence or absence of an intrapulpal pressure (IPP) simulation of 15 cmH2O. After adhesive and restorative procedures were carried out, the samples were stored in distilled water for 24 hours at 37°C, and taken for tensile bond strength (TBS) testing. Fracture analysis was performed using a light microscope at 40 X magnification. The data, obtained in MPa, were then submitted to the Kruskal-Wallis test ( a = 0.05). The results revealed that the TBS of SB and EX was significantly reduced under IPP simulation, differing from the TBS of PB and SE. Moreover, SE obtained the highest bond strength values in the presence of IPP. It could be concluded that IPP simulation can influence the bond strength of certain adhesive systems to dentin and should be considered when in vitro studies are conducted.