22 resultados para Domain structure


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genome sequence of Aedes aegypti was recently reported. A significant amount of Expressed Sequence Tags (ESTs) were sequenced to aid in the gene prediction process. In the present work we describe an integrated analysis of the genomic and EST data, focusing on genes with preferential expression in larvae (LG), adults (AG) and in both stages (SG). A total of 913 genes (5.4% of the transcript complement) are LG, including ion transporters and cuticle proteins that are important for ion homeostasis and defense. From a starting set of 245 genes encoding the trypsin domain, we identified 66 putative LG, AG, and SG trypsins by manual curation. Phylogenetic analyses showed that AG trypsins are divergent from their larval counterparts (LG), grouping with blood-induced trypsins from Anopheles gambiae and Simulium vittatum. These results support the hypothesis that blood-feeding arose only once, in the ancestral Culicomorpha. Peritrophins are proteins that interlock chitin fibrils to form the peritrophic membrane (PM) that compartmentalizes the food in the midgut. These proteins are recognized by having chitin-binding domains with 6 conserved Cys and may also present mucin-like domains (regions expected to be highly O-glycosylated). PM may be formed by a ring of cells (type 2, seen in Ae. aegypti larvae and Drosophila melanogaster) or by most midgut cells (type 1, found in Ae. aegypti adult and Tribolium castaneum). LG and D. melanogaster peritrophins have more complex domain structures than AG and T. castaneum peritrophins. Furthermore, mucin-like domains of peritrophins from T. castaneum (feeding on rough food) are lengthier than those of adult Ae. aegypti (blood-feeding). This suggests, for the first time, that type 1 and type 2 PM may have variable molecular architectures determined by different peritrophins and/or ancillary proteins, which may be partly modulated by diet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A cDNA coding for a Tenebrio molitor midgut protein named peritrophic membrane ancillary protein (PMAP) was cloned and sequenced. The complete cDNA codes for a protein of 595 amino acids with six insect-allergen-related-repeats that may be grouped in A (predicted globular)- and B (predicted nonglobular)-types forming an ABABAB structure. The PMAP-cDNA was expressed in Pichia pastoris and the recombinant protein (64 kDa) was purified to homogeneity and used to raise antibodies in rabbits. The specific antibody detected PMAP peptides (22 kDa) in the anterior and middle midgut tissue, luminal contents, peritrophic membrane and feces. These peptides derive from PMAP, as supported by mass spectrometry, and resemble those formed by the in vitro action of trypsin on recombinant PMAP. Both in vitro and in vivo PMAP processing seem to occur by attack of trypsin to susceptible bonds in the coils predicted to link AB pairs, thus releasing the putative functional AB structures. The AB-domain structure of PMAP is found in homologous proteins from several insect orders, except lepidopterans that have the apparently derived protein known as nitrile-specifier protein. Immunocytolocalization shows that PMAP is secreted by exocytosis and becomes entrapped in the glycocalyx, before being released into midgut contents. Circumstantial evidence suggests that PMAP-like proteins have a role in peritrophic membrane type 2 formation. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of the present work is to report studies on structural phase transition for PMN-xPT ferroelectric, with melt PbTiO3 composition around the MPB (x = 0.35 mol %), using infrared spectroscopy technique. The study was centered on monitoring the behavior of the 1-(NbO), 1-(TiO) and 1-(MgO) stretching modes as a function of temperature. The increasing as a function of temperature for 1-(TiO) and 1-(MgO) modes, observed between 230 and 300 K, can be related to the monoclinic (MC) + tetragonal (T) phase coexistence in the PMN-PT.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lectins have been classified into a structurally diverse group of proteins that bind carbohydrates and glycoconjugates with high specificity. They are extremely useful molecules in the characterization of saccharides, as drug delivery mediators, and even as cellular surface makers. In this study, we present camptosemin, a new lectin from Camptosema ellipticum. It was characterized as an N-acetyl-d-galactosamine-binding homo-tetrameric lectin, with a molecular weight around 26 kDa/monomers. The monomers were stable over a wide range of pH values and exhibited pH-dependent oligomerization. Camptosemin promoted adhesion of breast cancer cells and hemagglutination, and both activities were inhibited by its binding of sugar. The stability and unfolding/folding behavior of this lectin was characterized using fluorescence and far-UV circular dichroism spectroscopies. The results indicate that chemical unfolding of camptosemin proceeds as a two-state monomer-tetramer process. In addition, small-angle X-ray scattering shows that camptosemin behaves as a soluble and stable homo-tetramer molecule in solution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

1,3-beta-Glucan depolymerizing enzymes have considerable biotechnological applications including biofuel production, feedstock-chemicals and pharmaceuticals. Here we describe a comprehensive functional characterization and low-resolution structure of a hyperthermophilic laminarinase from Thermotoga petrophila (TpLam). We determine TpLam enzymatic mode of operation, which specifically cleaves internal beta-1,3-glucosidic bonds. The enzyme most frequently attacks the bond between the 3rd and 4th residue from the non-reducing end, producing glucose, laminaribiose and laminaritriose as major products. Far-UV circular dichroism demonstrates that TpLam is formed mainly by beta structural elements, and the secondary structure is maintained after incubation at 90 degrees C. The structure resolved by small angle X-ray scattering, reveals a multi-domain structural architecture of a V-shape envelope with a catalytic domain flanked by two carbohydrate-binding modules. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The PilZ protein was originally identified as necessary for type IV pilus (T4P) biogenesis. Since then, a large and diverse family of bacterial PilZ homology domains have been identified, some of which have been implicated in signaling pathways that control important processes, including motility, virulence and biofilm formation. Furthermore, many PilZ homology domains, though not PilZ itself, have been shown to bind the important bacterial second messenger bis(3`-> 5`)cyclic diGMP (c-diGMP). The crystal structures of the PilZ orthologs from Xanthomonas axonopodis pv Citri (PilZ(XAC1133), this work) and from Xanthomonas campestris pv campestris (XC1028) present significant structural differences to other PilZ homologs that explain its failure to bind c-diGMP. NMR analysis of PilZ(XAC1133) shows that these structural differences are maintained in solution. In spite of their emerging importance in bacterial signaling, the means by which NZ proteins regulate specific processes is not clear. In this study, we show that PilZ(XAC1133) binds to PilB, an ATPase required for TV polymerization, and to the EAL domain of FiMX(XAC2398), which regulates TV biogenesis and localization in other bacterial species. These interactions were confirmed in NMR, two-hybrid and far-Western blot assays and are the first interactions observed between any PilZ domain and a target protein. While we were unable to detect phosphodiesterase activity for FimXX(AC2398) in vitro, we show that it binds c-diGMP both in the presence and in the absence of PilZ(XAC1133). Site-directed mutagenesis studies for conserved and exposed residues suggest that PilZ(XAC1133) interactions with FimX(XAC2398) and PilB(XAC3239) are mediated through a hydrophobic surface and an unstructured C-terminal extension conserved only in PilZ orthologs. The FimX-PilZ-PilB interactions involve a full set of ""degenerate"" GGDEF, EAL and PilZ domains and provide the first evidence of the means by which PilZ orthologs and FimX interact directly with the TP4 machinery. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microplusin, a Rhipicephalus (Boophilus) microplus antimicrobial peptide (AMP) is the first fully characterized member of a new family of cysteine-rich AMPs with histidine-rich regions at the N and C termini. In the tick, microplusin belongs to the arsenal of innate defense molecules active against bacteria and fungi. Here we describe the NMR solution structure of microplusin and demonstrate that the protein binds copper II and iron II. Structured as a single alpha-helical globular domain, microplusin consists of five alpha-helices: alpha 1 (residues Gly-9 to Arg-21), alpha 2 (residues Glu-27 to Asn-40), alpha 3 (residues Arg-44 to Thr-54), alpha 4 (residues Leu-57 to Tyr-64), and alpha 5 (residues Asn-67 to Cys-80). The N and C termini are disordered. This structure is unlike any other AMP structures described to date. We also used NMR spectroscopy to map the copper binding region on microplusin. Finally, using the Gram-positive bacteria Micrococcus luteus as a model, we studied of mode of action of microplusin. Microplusin has a bacteriostatic effect and does not permeabilize the bacterial membrane. Because microplusin binds metals, we tested whether this was related to its antimicrobial activity. We found that the bacteriostatic effect of microplusin was fully reversed by supplementation of culture media with copper II but not iron II. We also demonstrated that microplusin affects M. luteus respiration, a copper-dependent process. Thus, we conclude that the antibacterial effect of microplusin is due to its ability to bind and sequester copper II.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pathogenic Leptospira is the etiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. Currently available vaccines have limited effectiveness and therapeutic interventions are complicated by the difficulty in making an early diagnosis of leptospirosis. The genome of Leptospira interrogans was recently sequenced and comparative genomic analysis contributed to the identification of surface antigens, potential candidates for development of new vaccines and serodiagnosis. Lp49 is a membrane-associated protein recognized by antibodies present in sera from early and convalescent phases of leptospirosis patients. Its crystal structure was determined by single-wavelength anomalous diffraction using selenomethionine-labelled crystals and refined at 2.0 angstrom resolution. Lp49 is composed of two domains and belongs to the all-beta-proteins class. The N-terminal domain folds in an immunoglobulin-like beta-sandwich structure, whereas the C-terminal domain presents a seven-bladed beta-propeller fold. Structural analysis of Lp49 indicates putative protein-protein binding sites, suggesting a role in Leptospira-host interaction. This is the first crystal structure of a leptospiral antigen described to date. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leptospirosis is a world spread zoonosis caused by members of the genus Leptospira. Although leptospires were identified as the causal agent of leptospirosis almost 100 years ago, little is known about their biology, which hinders the development of new treatment and prevention strategies. One of the several aspects of the leptospiral biology not yet elucidated is the process by which outer membrane proteins (OMPs) traverse the periplasm and are inserted into the outer membrane. The crystal structure determination of the conserved hypothetical protein LIC12922 from Leptospira interrogans revealed a two domain protein homologous to the Escherichia coli periplasmic chaperone SurA. The LIC12922 NC-domain is structurally related to the chaperone modules of E. coli SurA and trigger factor, whereas the parvulin domain is devoid of peptidyl prolyl cis-trans isomerase activity. Phylogenetic analyses suggest a relationship between LIC12922 and the chaperones PrsA, PpiD and SurA. Based on our structural and evolutionary analyses, we postulate that LIC12922 is a periplasmic chaperone involved in OMPs biogenesis in Leptospira spp. Since LIC12922 homologs were identified in all spirochetal genomes sequenced to date, this assumption may have implications for the OMPs biogenesis studies not only in leptospires but in the entire Phylum Spirochaetes. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microphase structure of a series of polystyrene-b-polyethylene oxide-b-polystyrene (SEOS) triblock copolymers with different compositions and molecular weights has been studied by solid-state NMR, DSC, wide and small angle X-ray scattering (WAXS and SAXS). WAXS and DSC measurements were used to detect the presence of crystalline domains of polyethyleneoxide (PEO) blocks at room temperature as a function of the copolymer chemical composition. Furthermore, DSC experiments allowed the determination of the melting temperatures of the crystalline part of the PEO blocks. SAXS measurements, performed above and below the melting temperature of the PEO blocks, revealed the formation of periodic structures, but the absence or the weakness of high order reflections peaks did not allow a clear assessment of the morphological structure of the copolymers. This information was inferred by combining the results obtained by SAXS and (1)H NMR spin diffusion experiments, which also provided an estimation of the size of the dispersed phases of the nanostructured copolymers. (C) 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48:55-64,2010

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper explores the structural continuum in CATH and the extent to which superfamilies adopt distinct folds. Although most superfamilies are structurally conserved, in some of the most highly populated superfamilies (4% of all superfamilies) there is considerable structural divergence. While relatives share a similar fold in the evolutionary conserved core, diverse elaborations to this core can result in significant differences in the global structures. Applying similar protocols to examine the extent to which structural overlaps occur between different fold groups, it appears this effect is confined to just a few architectures and is largely due to small, recurring super-secondary motifs (e.g., alpha beta-motifs, alpha-hairpins). Although 24% of superfamilies overlap with superfamilies having different folds, only 14% of nonredundant structures in CATH are involved in overlaps. Nevertheless, the existence of these overlaps suggests that, in some regions of structure space, the fold universe should be seen as more continuous.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bothropasin is a 48 kDa hemorrhagic PIII snake venom metalloprotease (SVMP) isolated from Bothrops jararaca, containing disintegrin/cysteine-rich adhesive domains. Here we present the crystal structure of bothropasin complexed with the inhibitor POL647. The catalytic domain consists of a scaffold of two subdomains organized similarly to those described for other SVMPs, including the zinc and calcium-binding sites. The free cysteine residue Cys(189) is located within a hydrophobic core and it is not available for disulfide bonding or other interactions. There is no identifiable secondary structure for the disintegrin domain, but instead it is composed mostly of loops stabilized by seven disulfide bonds and by two calcium ions. The ECD region is in a loop and is structurally related to the RGD region of RGD disintegrins, which are derived from I`ll SVMPs. The ECD motif is stabilized by the Cys(117)_Cys(310) disulfide bond (between the disintegrin and cysteine-rich domains) and by one calcium ion. The side chain of Glu(276) of the ECD motif is exposed to solvent and free to make interactions. In bothropasin, the HVR (hyper-variable region) described for other Pill SVMPs in the cysteine-rich domain, presents a well-conserved sequence with respect to several other Pill members from different species. We propose that this subset be referred to as PIII-HCR (highly conserved region) SVMPs. The differences in the disintegrin-like, cysteine-rich or disintegrin-like cysteine-rich domains may be involved in selecting target binding, which in turn could generate substrate diversity or specificity for the catalytic domain. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphofructokinase-1 and -2 (Pfk-1 and Pfk-2, respectively) from Escherichia coli belong to different homologous superfamilies. However, in spite of the lack of a common ancestor, they share the ability to catalyze the same reaction and are inhibited by the substrate MgATP. Pfk-2, an ATP-dependent 6-phosphofructokinase member of the ribokinase-like superfamily, is a homodimer of 66 kDa subunits whose oligomerization state is necessary for catalysis and stability. The presence of MgATP favors the tetrameric form of the enzyme. In this work, we describe the structure of Pfk-2 in its inhibited tetrameric form, with each subunit bound to two ATP molecules and two Mg ions. The present structure indicates that substrate inhibition occurs due to the sequential binding of two MgATP molecules per subunit, the first at the usual site occupied by the nucleotide in homologous enzymes and the second at the allosteric site, making a number of direct and Mg-mediated interactions with the first. Two configurations are observed for the second MgATP, one of which involves interactions with Tyr23 from the adjacent subunit in the dimer and the other making an unusual non-Watson-Crick base pairing with the adenine in the substrate ATP. The oligomeric state observed in the crystal is tetrameric, and some of the structural elements involved in the binding of the Substrate and allosteric ATPs are also participating in the dimer-dimer interface. This structure also provides the grounds to compare analogous features of the nonhomologous phosphofructokinases from E. coli. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interleukin-22 (IL-22) is a member of the interleukin-10 cytokine family, which is involved in anti-microbial defenses, tissue damage protection and repair, and acute phase responses. Its signaling mechanism involves the sequential binding of IL-22 to interleukin-22 receptor 1 (IL-22R1), and of this dimer to interleukin-10 receptor 2 (IL-10R2) extracellular domain. We report a 1.9 A crystal structure of the IL-22/IL-22R1 complex, revealing crucial interacting residues at the IL-22/IL-22R1 interface. Functional importance of key residues was confirmed by site-directed mutagenesis and functional studies. Based on the X-ray structure of the binary complex, we discuss a molecular basis of the IL-22/IL-22R1 recognition by IL-10R2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proline-rich N-terminal domain of gamma-zein has been reported in relevant process, which include its ability to cross the cell membranes. Evidences indicate that synthetic hexapeptide (PPPVHL), naturally found in N-terminal portion of gamma-zein, can adopt the polyproline II (PPII) conformation in aqueous solution. The secondary structure of gamma-zein in maize protein bodies had been analyzed by solid state Fourier transform infrared and nuclear magnetic resonance spectroscopies. However, it was not possible to measure PPII content in physiological environment since the beta-sheet and PPII signals overlap in both solid state techniques. Here, the secondary structure of gamma-zein has been analyzed by circular dichroism in SDS aqueous solution with and without ditiothreitol (DTT), and in 60% of 2-propanol and water with DTT The results show that gamma-zein has high helical content in all solutions. The PPII conformation was present at about 7% only in water/DTT solution. (c) 2007 Wiley Periodicals, Inc.