32 resultados para Coulomb explosions
Resumo:
In this work, angular distribution measurements for the elastic channel were performed for the (9)Be + (12)C reaction at the energies E(Lab) = 13.0, 14.5, 17.3, 19.0 and 21.0 MeV, near the Coulomb barrier. The data have been analyzed in the framework of the double folding Sao Paulo potential. The experimental elastic scattering angular distributions were well described by the optical potential at forward angles for all measured energies. However, for the three highest energies, an enhancement was observed for intermediate and backward angles. This can be explained by the elastic transfer mechanism. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Heavy-ion total reaction cross-section measurements for more than 1100 reaction cases covering 61 target nuclei in the range (6)Li-(238)U and 158 projectile nuclei from (2)H to (84)Kr (mostly exotic ones) have been analyzed in a systematic way by using an empirical, three-parameter formula that is applicable to the cases of projectile kinetic energies above the Coulomb barrier. The analysis has shown that the average total nuclear binding energy per nucleon of the interacting nuclei and their radii are the chief quantities that describe the cross-section patterns. A great amount of cross-section data (87%) has been quite satisfactorily reproduced by the proposed formula; therefore, the total reaction cross-section predictions for new, not yet experimentally investigated reaction cases can be obtained within 25% (or much less) uncertainty.
Resumo:
Elastic scattering of (8)B and (7)Be on a (58)Ni target has been measured at energies near the Coulomb barrier. The total reaction cross sections were deduced from Optical-model fits to the experimental angular distributions. Comparison with other systems shows evidence for proton-halo effects on (8)B, as well as for neutron-halo on (6)He reactions. While the enhancement in the cross section observed for (8)B is explained in terms of projectile breakup, in the case of (6)He reactions, the particle transfer proces explains the observed enhancement.
Resumo:
The ejection of the gas out of the disc in late-type galaxies is related to star formation and is due mainly to Type II supernovae. In this paper, we studied in detail the development of the Galactic fountains in order to understand their dynamical evolution and their influence on the redistribution of the freshly delivered metals over the disc. To this aim, we performed a number of 3D hydrodynamical radiative cooling simulations of the gas in the Milky Way where the whole Galaxy structure, the Galactic differential rotation and the supernova explosions generated by a single OB association are considered. A typical fountain powered by 100 Type II supernovae may eject material up to similar to 2 kpc which than collapses back mostly in the form of dense, cold clouds and filaments. The majority of the gas lifted up by the fountains falls back on the disc remaining within a radial distance Delta R = 0.5 kpc from the place where the fountain originated. This localized circulation of disc gas does not influence the radial chemical gradients on large scale, as required by the chemical models of the Milky Way which reproduce the metallicity distribution without invoking large fluxes of metals. Simulations of multiple fountains fuelled by Type II supernovae of different OB associations will be presented in a companion paper.
Resumo:
We here explore the effects of the SN explosions into the halo of star-forming galaxies like the Milky Way. Successive randomly distributed and clustered SNe explosions cause the formation of hot superbubbles that drive either fountains or galactic winds above the galactic disk, depending on the amount and concentration of energy that is injected by the SNe. In a galactic fountain, the ejected gas is re-captured by the gravitational potential and falls back onto the disk. From 3D non-equilibrium radiative cooling hydrodynamical simulations of these fountains, we find that they may reach altitudes up to about 5 kpc in the halo and thus allow for the formation of the so called intermediate-velocity-clouds (IVCs) which are often observed in the halos of disk galaxies. The high-velocity-clouds that are also observed but at higher altitudes (of up to 12 kpc) require another mechanism to explain their production. We argue that they could be formed either by the capture of gas from the intergalactic medium and/or by the action of magnetic fields that are carried to the halo with the gas in the fountains. Due to angular momentum losses to the halo, we find that the fountain material falls back to smaller radii and is not largely spread over the galactic disk. Instead, the SNe ejecta fall nearby the region where the fountain was produced, a result which is consistent with recent chemical models of the galaxy. The fall back material leads to the formation of new generations of molecular clouds and to supersonic turbulence feedback in the disk. (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
The exact physical conditions generating the abundances of r-elements in environments such as supernovae explosions are still under debate. We evaluated the characteristics expected for the neutrino wind in the proposed model of type-II supernova driven by conversion of nuclear matter to strange matter. Neutrinos will change the final abundance of elements after freeze out of r-process nucleosynthesis, specially those close to mass peaks.
Resumo:
The largest earthquake observed in the stable continental interior of the South American plate occurred in Serra do Tombador, Mato Grosso state - Brazil, on January 31,1955 with a magnitude of 6.2 m(b). Since then no other earthquake has been located near the 1955 epicentre. However, in Porto dos Gauchos, 100 km northeast of Serra do Tombador, a recurrent seismicity has been observed since 1959. Both Serra do Tombador and Porto dos Gauchos are located in the Phanerozoic Parecis basin. Two magnitude 5 earthquakes occurred in Porto dos Gauchos, in 1998 and 2005, with intensities up to VI and V, respectively. These two main shocks were followed by aftershock sequences lasting more than three years each. Local seismic stations have been deployed by the Seismological Observatory of the University of Brasilia since 1998 to study the ""Porto dos Gauchos"" seismic zone (PGSZ). A local seismic refraction survey was carried out with two explosions to help define the seismic velocity model. Both the 1998 and 2005 earthquake sequences occurred in the same WSW-ENE oriented fault zone with right-lateral strike-slip mechanisms. The epicentral zone is in the Parecis basin, near its northern border where there are buried grabens, generally trending WNW-ESE, such as the deep Mesoproterozoic Caiabis graben which lies partly beneath the Parecis basin. However, the epicentral distribution indicates that the 1998 and 2005 sequences are related to a N60 degrees E fault which probably crosses the entire Caiabis graben. The 1955 earthquake, despite the uncertainty in its epicentre, does not seem to be directly related to any buried graben either. The seismicity in the Porto dos Gauchos seismic zone, therefore, is not directly related to rifted crust. The probable direction of the maximum horizontal stress near Porto dos Gauchos is roughly E-W, consistent with other focal mechanisms further south in the Pantanal basin and Paraguay. but seems to be different from the NW-SE direction observed further north in the Amazon basin. The recurrent seismicity observed in Porto dos Gauchos, and the large 1955 earthquake nearby, make this area of the Parecis basin one of the most important seismic zones of Brazil. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We consider independent edge percolation models on Z, with edge occupation probabilities. We prove that oriented percolation occurs when beta > 1 provided p is chosen sufficiently close to 1, answering a question posed in Newman and Schulman (Commun. Math. Phys. 104: 547, 1986). The proof is based on multi-scale analysis.
Resumo:
We present the first measurement of photoproduction of J/psi and of two-photon production of high-mass e(+)e(-) pairs in electromagnetic (or ultra-peripheral) nucleus-nucleus interactions, using Au + Au data at root s(NN) = 200 GeV. The events are tagged with forward neutrons emitted following Coulomb excitation of one or both Au* nuclei. The event sample consists of 28 events with m(e+e-) > 2 GeV/c(2) with zero like-sign background. The measured cross sections at midrapidity of d sigma/dy (J/psi + Xn, y = 0) = 76 +/- 33 (stat) +/- 11 (syst) pb and d(2)sigma /dm dy (e(+) e(-) + Xn, y = 0) = 86 +/- 23(stat) +/- 16(syst) mu b/ (GeV/c(2)) for m(e+e-) epsilon vertical bar 2.0, 2.8 vertical bar GeV/c(2) have been compared and found to be consistent with models for photoproduction of J/psi and QED based calculations of two-photon production of e(+)e(-) pairs. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The angular distributions for elastic scattering and breakup of halo nuclei are analysed using a near-side/far-side decomposition within the framework of the dynamical eikonal approximation. This analysis is performed for (11)Be impinging on Pb at 69 MeV/nucleon. These distributions exhibit very similar features. In particular they are both near-side dominated, as expected from Coulomb-dominated reactions. The general shape of these distributions is sensitive mostly to the projectile-target interactions, but is also affected by the extension of the halo. This suggests the elastic scattering not to be affected by a loss of flux towards the breakup channel. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We study the effects of final state interactions in two-proton emission by nuclei. Our approach is based on the solution the time-dependent Schrodinger equation. We show that the final relative energy between the protons is substantially influenced by the final state interactions. We also show that alternative correlation functions can be constructed showing large sensitivity to the spin of the diproton system. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The tunneling of composite systems, where breakup may occur during the barrier penetration process, is considered in connection with the fusion of halo-like radioactive, neutron- and proton-rich nuclei, on heavy targets. The large amount of recent and new data clearly indicates that breakup hinders the fusion at energies near and below the Coulomb barrier. However, clear evidence for enhancement due to halo properties seems to over ride the breakup hindrance at lower energies, owing, to a large extent, to the extended matter density distribution. In particular we report here that at sub-barrier energies the fusion cross section of the Borromean two-neutron halo nucleus (6)He with the actinide nucleus (238)U is significantly enhanced as compared to the fusion of a similar projectile with no halo. This conclusion differs from that of the original work, where it was claimed that no such enhancement ensues. This sub-barrier fusion enhancement is also observed in the (6)He + (209)Bi system. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We discuss consistency of the concept of external background in QFT. Different restrictions on magnitude of magnetic and electric fields are analyzed. The back reaction due to strong electric field is calculated and restrictions on the magnitude and duration of such a field are obtained. The problem of consistency of Dirac equation with a superstrong Coulomb field is discussed.
Resumo:
Difficulties in cross-section measurements at very low energies, when charged particles are involved, led to the development of some indirect methods. The Trojan horse method (THM) allows us to bypass the Coulomb effects and has been successfully applied to several reactions of astrophysical interest. A brief review of the THM applications is reported together with some of the most recent results.
Resumo:
Using the Sao Paulo potential and the barrier penetration formalism we have calculated the astrophysical factor S(E) for 946 fusion reactions involving stable and neutron-rich isotopes of C, O, Ne, and Mg for center-of-mass energies E varying from 2 to approximate to 18-30 MeV (covering the range below and above the Coulomb barrier). We have parameterized the energy dependence, S(E), by an accurate universal 9-parameter analytic expression and present tables of fit parameters for all the reactions. We also discuss the reduced 3-parameter version of our fit which is highly accurate at energies below the Coulomb barrier, and outline the procedure for calculating the reaction rates. The results can be easily converted to thermonuclear or pycnonuclear reaction rates to simulate various nuclear burning phenomena, in particular, stellar burning at high temperatures and nucleosynthesis in high density environments. (C) 2010 Elsevier Inc. All rights reserved